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Staycation post No 1. I will be out of the virtual office
until 30 August.

That  sounds  like  the  sort  of  riddle  I  used  to  hear  in
childhood. For instance, when is a door not a door? The answer
was: when it’s ajar! [1] Well, at least we all know what a
door is, so let us begin with what a conjecture actually is.

According to my dictionary, a conjecture is simply a guess.
But in mathematics it is somehow more than that. Essentially,
the  idea  is  that  a  mathematician  can  be  guided  by  their
experience to postulate that something he/she knows to be true
under  particular  circumstances  is  in  fact  true  under  all
possible or relevant circumstances. If they can prove it, then
their conjecture becomes a theorem.

The question then arises: what is a conjecture in physics? And
if you can demonstrate its truth by measurement or reasoned
argument, does it become a theory?

Let us take as an example a system such as an electrolyte or
plasma  containing  many  charged  particles.  The  particles
interact pairwise through the Coulomb potential and as the
Coulomb  potential  is  long-range  this  presents  a  many-body
problem.  What  happens  in  practice  is  that  a  form  of
renormalization takes place, and the Coulomb potential due to
any one electron is replaced by a potential which falls off
more rapidly due to the screening effect of the cloud of
particles surrounding it. A very simple introduction to this
idea (which is known as the Debye-Huckel theory) can be found
in Section 1.2.1 of the book cited as reference [2] below.

If we take the case of the turbulence cascade, the Fourier
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wavenumber modes provide the degrees of freedom. Then, instead
of  pairwise  interactions,  we  have  the  famous  triad
interactions, each and every one of which conserves energy. If
for simplicity we consider a periodic box, then the mean flux
of energy from low wavenumbers to high can be written as the
sum of all the individual mean triadic interactions. As in
principle all modes are coupled, this is also a many-body
problem and one can expect some form of renormalization to
take  place.  In  some  simple  circumstances  this  can  be
interpreted  as  a  renormalized  viscosity  (the  effective
viscosity)  which  is  very  much  larger  than  the  molecular
viscosity. These ideas date back to the late 19th century and
are the earliest example of renormalization (although they did
not  use  this  term  which  came  much  later  on,  around  the
mid-20th century).

Now let us consider what happens as we progressively increase
the  Reynolds  number.  For  the  utmost  simplicity  we  will
restrict  our  attention  to  forced,  stationary  isotropic
turbulence. Then, if we hold the rate of energy input into the
system constant and decrease the viscosity progressively, this
increases the Reynolds number at constant dissipation rate. It
also increases the size of the largest wavenumbers of the
system. The result is a form of scale-invariance in which the
flux through wavenumbers is independent of wavenumber and the
result is the dissipation law that the scaled dissipation law
is  independent  of  the  viscosity  as  a  rigorous  asymptotic
result  [3].  It  should  perhaps  be  emphasised  that  this
asymptotic behaviour is the infinite Reynolds number limit;
but, from a practical point of view, we find that subsequent
variation  becomes  too  small  to  detect  at  Taylor-Reynolds
numbers of a few hundred and thereafter may be treated as
constant. We will return to this point in the next post, along
with an illustration.

Meanwhile, back in real space, velocity gradients are becoming
steeper as the Reynolds number increases, and this aspect



disturbed Onsager [4] (see also the review of this paper in
the  context  of  Onsager’s  life  and  work  [5]).  In  fact  he
concluded that the infinite Reynolds number limit was the same
as setting the viscosity equal to zero. In his view, the
resulting  Euler’s  equation  could  still  account  for  the
dissipation in terms of singular behaviour. But, it has to be
said that, in the absence of viscosity, there is no transfer
of  macroscopic  kinetic  energy  into  heat  (i.e.  microscopic
kinetic  energy).  I  have  seen  some  references  to  pseudo-
dissipation recently, so there is perhaps a growing awareness
that Onsager’s conjecture needs further critical thought.
Onsager’s paper concludes with the sentence: ‘The detailed
conservation of energy (i.e. the global conservation law of
the nonlinear term) does not imply conservation of the total
energy if the total number of steps in the cascade is infinite
and  the  double  sum  …  converges  only  conditionally.’  The
italicised parenthesis is mine as Onsager referred here to one
of his equation numbers. However this is merely an unsupported
assertion which is incorrect on physical grounds because:
1. The number of steps is never infinite in a real physical
flow.
2. The individual interactions are conservative so it is not
clear how mere summation can lead to overall non-conservation.
3. The physical process involves a renormalization which means
that there is a well-defined physical infinite Reynolds number
limit at quite moderate Reynolds numbers.
It is totally unclear to me what mathematical justification
there can be for this statement; and discussions of it that I
have seen in the literature seem to me to be unsound on
physical grounds. I shall return to these points in future
blogs.
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