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In 1971, when I began as a lecturer in Engineering Science at
Edinburgh, my degree in physics provided me with no basis for
teaching  fluid  dynamics.  I  had  met  the  concept  of  the
convective derivative in statistical mechanics, as part of the
derivation of the Liouville equation, and that was about it.
And of course the turbulence theory of my PhD was part of what
we  now  call  statistical  field  theory.  Towards  the  end  of
autumn term, I was due to take over the final-year fluids
course, but fortunately a research student who worked as a lab
demonstrator for me had previously taken the course and kindly
lent me his copy of the lecture notes. However, in my first
year, I was never more than one lecture ahead of the students!

This grounding in the subject was reinforced by practical
experience,  when  I  began  doing  experimental  work  on  drag
reduction by additives and on particle diffusion. It also
allowed me to recover quickly from an initial puzzlement, when
I saw a paper in JFM which proposed that the occurrence of
streamwise vorticity could be taken as a signal of turbulence
in duct flow.

Later on, I learned that this idea could be extended to give a
plausible picture of the turbulent bursting process, and a
discussion can be found in Section 11.4.3 of my book [1],
where the development of $\Lambda$ vortices is illustrated in
Fig. 11.1. In the book, this is preceded by a treatment of the
boundary layer on a flat plate in Section 1.4, which can help
us to understand the basic idea as follows. Suppose we have a
fluid moving with constant velocity $U_1$, incident on a flat
plate lying in the ($x_1,x_3$) plane with its leading edge at
$x_1=0$. Vorticity is generated at this point due to the no-
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slip boundary condition, and diffuses out normal to the plate
in the $x_2$ direction, resulting in a velocity field of the
form $u_1(x_2)$, in the boundary layer. We can visualize the
sense of the vorticity vector by imagining the effect of a
small portion of the fluid becoming solidified. That part
nearest  the  plate  will  slow  down,  the  ‘solid  body’  will
rotate, and the spin vector will point in the $x_3$ direction.
This is the only component of vorticity in the system.

The occurrence of vorticity in the other two directions must
be a consequence of instability and almost certainly begins
with vorticity building up in the $x_1$ direction due to edge
effects. That is, in practice, the plate must be of finite
extent in the cross-stream or $x_3$ direction. A turbulence
transition could not occur if the plate (as normally assumed
for pedagogic purposes) were of infinite extent. This provides
an unequivocal criterion for the occurrence of the transition
to turbulence, but there is still the question of when the
turbulence is in some sense well-developed. And of course
other flows may require other criteria.

The question of whether a flow is turbulent or not became
something of an issue in the 1980s/90s, when there was a
growing interest in applying Renormalization Group (RG) to
turbulence. The pioneering work on applying RG to randomly
stirred  fluid  motion  was  reported  by  Forster,  Nelson  and
Stephen [2] in 1976, and you should note from the title of
their first paper that the word ‘turbulence’ does not appear.
Their work was restricted to showing that there was a fixed
point  of  the  RG  transformations  in  the  limit  of  zero
wavenumbers  (i.e.  ‘large  wavelengths’).

The  main  drive  in  turbulence  research  is  always  towards
applications, and inevitably pressure developed to seek ways
of extending the work of Forster et al. to turbulence. In the
process a distinction grew up between ‘stirred fluid motion’
and so-called ‘Navier-Stokes turbulence’. The latter should be
described by the spectral energy balance known as the Lin



equation,  whereas  the  former  just  reflects  its  Gaussian
forcing. Nowadays, in physics, the distinction has settled
down to ‘stirred hydrodynamics’ and just plain turbulence!

The  difficulty  of  defining  turbulence  in  a  concise  way
remains,  but  some  light  can  be  shed  on  these  earlier
controversies by considering a more recent discovery that we
made at Edinburgh. This was the result that a dynamical system
consisting  of  the  Navier-Stokes  equations  forced  by  the
combination  of  an  initial  Gaussian  field  and  a  negative
damping term, will at very low Reynolds numbers become non-
turbulent and take the form of a Beltrami flow [3]. In this
paper, we emphasised that at early times the transfer spectrum
$T(k,t)$ has the behaviour typically found in simulations of
isotropic turbulence but at later times tends to zero. At the
same time, the energy spectrum $E(k,t)$ tends to a unimodal
spectrum at $k=1$. An interesting point is that the fixed
point of Forster et al. $k \rightarrow 0$ is cut off by our
lattice, so that we observe a Beltrami flow instead.
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