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Following on to last week’s post, I would like to make a point
that, so far as I know, has not previously been made in the
literature of the subject. This is, that the energy spectrum
is (in the sense of thermodynamics) an intensive quantity.
Therefore it should not depend on the system size. This is, as
opposed to the total kinetic energy (say) which does depend on
the size of the system and is therefore extensive.

What  applies  to  the  energy  spectrum  also  applies  to  the
second-order structure function. If we now consider equation
(1)  from  the  previous  blog,  which  is
\begin{equation}S_2(r)=C(\mathbf{x},t)
\varepsilon^{2/3}r^{2/3}(L/r)^{-\mu},
\label{62S2}\end{equation}then  for  isotropic,  stationary
turbulence,  it  may  be  written  as:  \begin{equation}S_2(r)=C
\varepsilon^{2/3}r^{2/3}  (L/r)^{-\mu}.  \end{equation}  Note
that $C$ is constant, as it can no longer depend on the
macrostructure.

Of course this still contains the factor $L^{-\mu}$. Now, $L$
is only specified as the external scale in K62, but it is
necessarily related to the size of the system. Accordingly
taking the limit of infinite system size, is related to taking
the limit of infinite values of $L$, which is needed in order
to have $k=0$ and to be able to carry out Fourier transforms.
If we do this, we have three possible outcomes. If $\mu$ is
negative, then $S_2 \rightarrow \infty$, as $L \rightarrow
\infty$, whereas if $\mu$ is positive, then $S_2$ vanishes in
the limit of infinite system size. Hence, in either case, the
result  is  unphysical,  both  by  the  standards  of  continuum
mechanics and by those of statistical physics.
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However, if $\mu = 0$ then there is no problem. The structure
function (and spectrum) exist in the limit of infinite system
size. Could this be an argument for K41?

Lastly, we should mention that McComb and May [1] have used a
plausible  method  to  estimate  values  of  $L$  and,  taking  a
representative  value  of  $\mu=0.1$,  have  shown  that  the
inclusion of this factor as in K62 destroys the well-known
collapse  of  spectral  data  that  can  be  achieved  using  K41
variables.
We began with the well-known graph in which one-dimensional
projections of the energy spectrum for a range of Reynolds
numbers are normalized on Kolmogorov variables and plotted
against $k’=k/k_d$: see, for example, Figure 2.4 of the book
[2], which is shown immediately below this text.

 



Measured  one-dimensional  spectra  fro  a  wide  range  of
Reynolds numbers showing the asymptotic effect of scaling
on  K41  variablelsl.  Reproduced  from  Figure  2.4  of
Reference  2.

 

In this work, we referred to $L$ as $L_{ext}$ and we estimated
it as follows. From the above graph, we see that the universal
behaviour always occurs in the limit $R_\lambda \rightarrow
\infty$ with all spectra collapsing to a single curve at $k’=
k/k_d  =1$.  As  the  Reynolds  number  increases,  each  graph
flattens off as $k$ decreases and ultimately forms a plateau
at low wavenumbers. We argued that one can use the point where
this departure takes place $k’_{ext}$ (say) to estimate the



external length scale, thus; \[L’_{ext} = 2\pi/k’_{ext}.\]
In order to make a comparison, we chose the results for a
tidal channel at $R_{\lambda}=2000$ and for grid turbulence at
$R_{\lambda}=72$. We show these two spectra, as selected from
Fig. 1, on Figure 2 below.

 

Figure 2 from Reference 1.

 

Note  that  we  plot  the  scaled  one-dimensional  spectrum
$\psi(k’)=\phi(k’)/(\varepsilon  \nu^5)^{1/4}$.
In the next figure, we plot these two spectra in compensated
form,  where  we  have  taken  the  one-dimensional  spectral
constant to be $\alpha_{1}=1/2$, on the basis of Figure 2. In
this form the $-5/3$ power law appear as a horizontal line at
unity. We will return to this aspect later.

 



Figure 3 from Reference 1.

 

In order to assess the effect of including the K62 correction,
we estimated to be $L’_{ext}\sim 50$ for the grid turbulence
and as $L’_{ext}\sim 2000$ for the tidal channel. In fact the
spectra from the tidal channel do not actually peel off from
the $-5/3$ line at low $k$ so our estimate is actually a lower
bound for this case. This favours K62 in the comparison. We
took the value $\mu = 0.1$, as obtained by high-resolution
numerical  simulation  and  the  result  of  including  the  K62
correction is shown in Figure 4.

 



Figure 4 from Reference 1.

 

It can be seen that including the K62 corrections destroys the
collapse of the spectra which, apart from showing a slope of
$\mu  =  -0.1$  in  both  cases,  are  now  separated  and  in  a
constant ratio of $0.69$. Evidently the universal collapse of
spectra  in  Figure  1  would  not  be  observed  if  the  K62
corrections  were  in  fact  correct!
My final point is that one of the unfavourable referees for
this paper had a major concern with the fact that the results
for grid turbulence did not really show much $-5/3$ behaviour.
This is to miss the point. The K41 scaling shows a universal
form in the dissipation range, as well as in the inertial
range. The inclusion of the K62 correction destroys this, when
implemented with plausible estimates for the two parameters.
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