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As is well known, Kolmogorov interpreted Landau’s criticism as
referring  to  the  small-scale  intermittency  of  the
instantaneous  dissipation  rate.  His  response  was  to  adopt
Obukhov’s proposal to introduce a new dissipation rate which
had been averaged over a sphere of radius $r$, and which may
be denoted by $\varepsilon_r$. This procedure runs into an
immediate fundamental objection.

In K41A, (or its wavenumber-space equivalent) the relevant
inertial-range quantity for the dimensional analysis is the
local (in wavenumber) energy transfer. This is of course equal
to the mean dissipation rate by the global conservation of
energy (It is a potent source of confusion that these theories
are  almost  always  discussed  in  terms  of  the  dissipation
$\varepsilon$, when the proper inertial-range quantity is the
nonlinear transfer of energy $\Pi$. The inertial range is
defined by the condition $\Pi_{max} = \varepsilon$). However,
as  pointed  out  by  Kraichnan  [1]  there  is  no  such  simple
relationship  between  locally-averaged  energy  transfer  and
locally-averaged dissipation.

Although Kolmogorov presented his 1962 theory as `A refinement
of previous hypotheses …’, it is now generally understood that
this is incorrect. In fact it is a radical change of approach.
The  1941  theory  amounted  to  a  general  assumption  that  a
cascade of many steps would lead to scales where the mean
properties of turbulence were independent of the conditions of
formation (i.e. of, essentially, the physical size of the
system). Whereas, in 1962, the assumption was, in effect, that
the mean properties of turbulence did depend on the physical
size of the system. We will return to this point presently,
but for the moment we concentrate on the preliminary steps.
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The  1941  theory  relied  on  a  general  assumption  with  an
underlying physical plausibility. In contrast, the 1962 theory
involved an arbitrary and specific assumption. This was to the
effect that the logarithm of $\varepsilon(\mathbf{x},t)$ has a
normal distribution for large $L/r$ where $L$ is referred to
as an external scale and is related to the physical size of
the  system.  We  describe  this  as  `arbitrary’  because  no
physical  justification  is  offered;  but  in  any  case  it  is
certainly specific. Then, arguments were developed that led to
a modified expression for the second-order structure function,
thus:
\begin{equation}S_2(r)=C(\mathbf{x},t)\varepsilon^{2/3}r^{2/3}
(L/r)^{-\mu},  \label{62S2}\end{equation}  where
$C(\mathbf{x},t)$ depends on the macrostructure of the flow.

In  addition,  Kolmogorov  pointed  out  that  `the  theorem  of
constancy of skewness …derived (sic) in Kolmogorov (1941b)’ is
replaced  by  \begin{equation}  S(r)  =
S_0(L/r)^{3\mu/2},\end{equation} where $S_0$ also depends on
the macrostructrure.

Equation (\ref{62S2}) is rather clumsy in structure, in the
way the prefactor $C$ depends on $x$. This is because of
course we have $r=x-x’$, so clearly $C(\mathbf{x},t)$ also
depends on $r$. A better way of tackling this would be to
introduce centroid and relative coordinates, $\mathbf{R}$ and
$\mathbf{r}$,  such  that  \begin{equation}\mathbf{R}  =
(\mathbf{x}+\mathbf{x’})/2;  \qquad  \mbox{and}  \qquad
\mathbf{r}= ( \mathbf{x}-\mathbf{x’}).\end{equation} Then we
can re-write the prefactor as $C(\mathbf{R}, r; t)$, where the
dependence  on  the  macrostructure  is  represented  by  the
centroid  variable,  while  the  dependence  on  the  relative
variable holds out the possibility that the prefactor becomes
constant for sufficiently small values of $r$.

Of course, if we restrict our attention to homogeneous fields,
then there can be no dependence of mean quantities on the
centroid  variable.  Accordingly,  one  should  make  the



replacement:  \begin{equation}C(\mathbf{R},  r;  t)=C(r;
t),\end{equation}  and  the  additional  restriction  to
stationarity would eliminate the dependence on time. In fact
Kraichnan [1] went further and replaced the pre-factor with
the constant $C$: see his equation (1.9).

For sake of completeness, another point worth mentioning at
this  stage  is  that  the  derivation  of  the  `4/5′  law  is
completely unaffected by the `refinements’ of K62. This is
really rather obvious. The Karman-Howarth equation involves
only ensemble-averaged quantities and the derivation of the
`4/5′ law requires only the vanishing of the viscous term.
This fact was noted by Kolmogorov [2].

[1] R. H. Kraichnan. On Kolmogorov’s inertial-range theories.
J. Fluid Mech., 62:305, 1974.
[2] A. N. Kolmogorov. A refinement of previous hypotheses
concerning the local structure of turbulence in a viscous
incompressible fluid at high Reynolds number. J. Fluid Mech.,
13:82-85, 1962.
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The idea that K41 had some problem with the way that averages
were taken has its origins in the famous footnote on page 126
of the book by Landau and Lifshitz [1]. This footnote is
notoriously difficult to understand; not least because it is
meaningless unless its discussion of the `dissipation rate
$\varepsilon$’ refers to the instantaneous dissipation rate.
Yet $\varepsilon$ is clearly defined in the text above (see
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the equation immediately before their (33.8)) as being the
mean dissipation rate. Nevertheless, the footnote ends with
the sentence `The result of the averaging therefore cannot be
universal’.  As  their  preceding  discussion  in  the  footnote
makes clear, this lack of universality refers to ‘different
flows’: presumably wakes, jets, duct flows, and so on.

We can attempt a degree of deconstruction as follows. We will
use  our  own  notation,  and  to  this  end  we  introduce  the
instantaneous structure function $\hat{S}_2(r,t)$, such that
$\langle \hat{S}_2(r,t) \rangle =S_2(r)$. Landau and Lifshitz
consider the possibility that $S_2(r)$ could be a universal
function in any turbulent flow, for sufficiently small values
of $r$ (i.e. the Kolmogorov theory). They then reject this
possibility, beginning with the statement:

`The instantaneous value of $\hat{S}(r,t)$ might in principle
be expressed as a universal function of the energy dissipation
$\varepsilon$ at the instant considered.’

Now this is rather an odd statement. Ignoring the fact that
the dissipation is not the relevant quantity for inertial-
range behaviour, it is really quite meaningless to discuss the
universality of a random variable in terms of its relation to
a  mean  variable  (i.e.  the  dissipation).  A  discussion  of
universality  requires  mean  quantities.  Otherwise  it  is
impossible to test the statement. The authors have possibly
relied on the qualification `at the instant considered’. But
how would one establish which instant that was for various
different flows?

They then go on:

`When we average these expressions, however, an important part
will be played by the law of variation of $\varepsilon$ over
times of the order of the periods of the large eddies (of size
$\sim L$), and this law is different for different flows.’

This seems a rather dogmatic statement but it is clearly wrong



for the the broad (and important) class of stationary flows.
In such flows, $\varepsilon$ does not vary with time.

The authors conclude (as we pointed out above) that: `The
result of the averaging therefore cannot be universal.’ One
has to make allowance for possible uncertainties arising in
translation,  but  nevertheless,  the  latter  part  of  their
argument only makes any sort of sense if the dissipation rate
is also instantaneous. Such an assumption appears to have been
made by Kraichnan [2], who provided an interpretation which
does  not  actually  depend  on  the  nature  of  the  averaging
process.

In fact Kraichnan worked with the energy spectrum, rather than
the structure function, and interpreted Landau’s criticism of
K41  as  applying  to  \begin{equation}E(k)  =
\alpha\varepsilon^{2/3}k^{-5/3}.\label{6-K41}\end{equation}
His interpretation of Landau was that the prefactor $\alpha$
may not be a universal constant because the left-hand side of
equation (\ref{6-K41}) is an average, while the right-hand
side is the 2/3 power of an average.

Any  average  involves  the  taking  of  a  limit.  Suppose  we
consider a time average, then we have \begin{equation} E(k) =
\lim_{T\rightarrow\infty}\frac{1}{T}\int^{T}_{0}\widehat{E}(k,
t)dt,  \end{equation}  where  as  usual  the  `hat’  denotes  an
instantaneous  value.  Clearly  the  statement
\begin{equation}E(k)  =  \mbox{a  constant};\end{equation}or
equally  the  statement,  \begin{equation}E(k)  =
f\equiv\langle\hat{f}\rangle, \end{equation} for some suitable
$f$, presents no problem. It is the `2/3′ power on the right-
hand side of equation (\ref{6-K41}) which means that we are
apparently equating the operation of taking a limit to the 2/3
power of taking a limit.

However, it has recently been shown [3] that this issue is
resolved  by  noting  that  the  pre-factor  $\alpha$  itself
involves an average over the phases of the system. It turns



out that $\alpha$ depends on an ensemble average to the $-2/3$
power and this cancels the dependence on the $2/3$ power on
the right hand side of (\ref{6-K41}).

[1] L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon
Press, London, English edition, 1959.
[2] R. H. Kraichnan. On Kolmogorov’s inertial-range theories.
J. Fluid Mech., 62:305, 1974.
[3]  David  McComb.  Scale-invariance  and  the  inertial-range
spectrum  in  three-dimensional  stationary,  isotropic
turbulence.  J.  Phys.  A:  Math.  Theor.,42:125501,  2009.
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To lay a foundation for the present piece, we will first
consider the joint Kolmogorov-Obukhov picture in more detail.
For  completeness,  we  should  begin  by  mentioning  that
Kolmogorov also used the Karman-Howarth equation, which is the
energy balance equation connecting the second- and third-order
structure functions, to derive the so-called `$4/5$’ law for
the third-order structure function.This procedure amounts to a
de facto closure, as the time-derivative is neglected (an
exact step in our present case, as we are restricting our
attention to stationary turbulence) and the term involving the
viscosity vanishes in the limit of infinite Reynolds number.
This  is  often  referred  to  as  `the  only  exact  result  in
turbulence theory’; but increasingly it is being referred to,
perhaps  more  correctly,  as  `the  only  asymptotically  exact
result in turbulence’.
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As part of this work, he also assumed that the skewness was
constant; and this provided a relationship between the second-
and  third-order  structure  functions  which  recovered  the
`$2/3$’ law. It is interesting to note that Lundgren used the
method of matched asymptotic expansions to obtain both the
`$4/5$’  and  `$2/3$’  laws,  without  having  to  make  any
assumption about the skewness. This work also offered a way of
estimating the extent of the inertial range in real space.

However,  the  Karman-Howarth  equation  is  local  in  the
independent  variables  and  therefore  does  not  describe  an
energy cascade. In contrast, the Lin equation (which is just
its Fourier transform) shows that all the degrees of freedom
in turbulence are coupled together. It takes the form, for the
energy  spectrum  $E(k,  t)$,  in  the  presence  of  an  input
spectrum  $W(k)$:  \begin{equation}\frac{\partial
E(k,t)}{\partial  t}  =  W(k)+  T(k,t)-  2\nu_{0}k^{2}E(k,
t),\label{lin}\end{equation} where $\nu_{0}$ is the kinematic
viscosity  and  the  transfer  spectrum  $T(k,t)$  is  given
by\begin{eqnarray}T(k,t)  &  =  &  2\pi  k^{2}\int  d^{3}j\int
d^{3}l\,\delta(\mathbf{k}-\mathbf{j}-
\mathbf{l})M_{\alpha\beta\gamma}(\mathbf{k})\nonumber  \\  &
\times  &
\left\{C_{\beta\gamma\alpha}(\mathbf{j},\mathbf{l},\mathbf{-
k};t)-C_{\beta\gamma\alpha}(\mathbf{-j},\mathbf{-
l},\mathbf{k};t)\right\},\end{eqnarray}with  \begin{equation}
M_{\alpha\beta\gamma}(\mathbf{k})=-
\frac{i}{2}\left[k_{\beta}P_{\alpha\gamma}(\mathbf{k})+k_{\gam
ma}P_{\alpha\beta}(\mathbf{k})\right],\label{M}\end{equation}
and  the  projector  $P_{\alpha\beta}(\mathbf{k})$  is
\begin{equation}P_{\alpha\beta}(\mathbf{k})=\delta_{\alpha\bet
a}-\frac{k_{\alpha}k_{\beta}}{|\mathbf{k}|^{2}},
\end{equation}where  $\delta_{\alpha\beta}$  is  the  Kronecker
delta, and the third-order moment $C_{\beta\gamma\alpha}$ here
takes  the  specific  form:  \begin{equation}
C_{\beta\gamma\alpha}(\mathbf{j},\mathbf{l},\mathbf{-
k};t)=\langle



u_{\beta}(\mathbf{j},t)u_{\gamma}(\mathbf{l},t)u_{\alpha}(\mat
hbf{-k},t) \rangle.\end{equation}

At  this  stage  we  also  define  the  flux  of  energy
$\Pi(\kappa,t)$ due to inertial transfer through the mode with
wavenumber  $k=\kappa$.  This  is  given  by:
\begin{equation}\Pi(\kappa,t)  =
\int_{\kappa}^{\infty}\,dk\,T(k,t).\end{equation}
Further discussion and details may be found in Section 4.2 of
the book [1].
We  now  have  a  rather  simple  picture.  In  formulating  our
problem, the shape of the input spectrum should be chosen to
be peaked near the origin, such that higher wavenumbers are
driven  by  inertial  transfer,  with  energy  being  dissipated
locally by the viscosity. Then we can define the rate at which
stirring forces do work on the system by: \begin{equation}
\int_0^\infty \, W(k)\, dk = \varepsilon_W. \end{equation}

Obukhov’s idea of the constant inertial flux can be expressed
as follows. As the Reynolds number is increased, the transfer
rate, as given by equation (6), will also increase and must
reach a maximum value, which in turn must be equal to the
viscous  dissipation.  Thus  we  introduce  the  symbol
$\varepsilon_T$  for  the  maximum  inertial  flux  as:
\begin{equation}\varepsilon_T  =
\Pi_{\mbox{max}},\end{equation} and for stationary turbulence
at sufficiently high Reynolds number, we have the limiting
condition:  \begin{equation}\varepsilon  =  \varepsilon_T  =
\varepsilon_W.\end{equation}

Thus the loose idea of a local cascade involving eddies in
real space is replaced by the precisely formulated concept of
scale invariance of the inertial flux in wavenumber space. As
is  well  known,  this  picture  leads  directly  to  the  $-5/3$
energy spectrum in the limit of large Reynolds numbers.

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.



Oxford University Press, 2014.
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The Kolmogorov $-5/3$ spectrum continues to be the subject of
contentious debate. Despite its great utility in applications
and its overwhelming confirmation by experiments, it is still
plagued  by  the  idea  that  it  is  subject  to  intermittency
corrections. From a fundamental view this is difficult to
understand because Kolmogorov’s theory (K41a) was expressed in
terms of the mean dissipation, which can hardly be affected by
intermittency.  Another  problem  is  that  Kolmogorov  actually
derived the $2/3$ law for the structure function. Of course
one  can  derive  the  spectrum  from  this  result  by  Fourier
transformation; but this is not a completely trivial process
and we will discuss it in a future post.

The trouble seems to be that Kolmogorov’s theory, despite its
great  pioneering  importance,  was  an  incomplete  and
inconsistent theory. It was formulated in real space; where,
although the energy transfer process can be loosely visualised
from Richardson’s idea of a cascade, the concept of such a
cascade  is  not  mathematically  well  defined.  Also,  having
introduced the inertial range of scales, where the viscosity
may be neglected, he characterised this range by the viscous
dissipation  rate,  which  is  not  only  inconsistent  but
incorrect. An additional complication, which undoubtedly plays
a  part,  is  that  his  theory  was  applied  to  turbulence  in
general. The basic idea was that the largest scales would be
affected by the nature of the flow, but a stepwise cascade
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would result in smaller eddies being universal in some sense.
That is, they would have much the same statistical properties,
despite the different conditions of formation. In order to
avoid uncertainties that can arise from this rather general
idea, we will restrict our attention to stationary, isotropic
turbulence here.

To make a more physical picture we have to follow Obukhov and
work  in  $k$  space  with  the  Fourier  transform
$\mathbf{u}(\mathbf{k},t)$  of  the  velocity  field
$\mathbf{u}(\mathbf{x},t)$. This was introduced by Taylor in
order  to  allow  the  problem  of  isotropic  turbulence  to  be
formulated as one of statistical mechanics, with the Fourier
components acting as the degrees of freedom. In this way,
Obukhov identified the conservative, inertial flux of energy
through the modes as being the key quantity determining the
energy spectrum in the inertial range. It follows that, with
the input and dissipation being negligible, the flux must be
constant  (i.e.  independent  of  wavenumber)  in  the  inertial
range, with the extent of the inertial range increasing as the
Reynolds number was increased, and this was later recognized
by Osager in (1945). Later still, this property became widely
known and for many years has been referred to by theoretical
physicists as scale invariance. It should be emphasised that
the inertial flux is an average quantitiy, as indeed is the
energy spectrum, and any intermittency effects present, which
are characteristics of the instantaneous velocity field, will
inevitably be averaged out. Of course, in stationary flows the
inertial transfer rate is the same as the dissipation rate,
but in non-stationary flows it is not.

This  is  not  intended  to  minimise  the  importance  of
Kolmogorov’s pioneering work. It is merely that we would argue
that one also needs to consider Obukhov’s theory (also, in
1941), with possibly also a later contribution from Onsager
(in 1945), in order to have a complete theoretical picture. In
effect this seems to have been the view of the turbulence



community from the late 1940s onwards. Discussion of turbulent
energy transfer and dissipation in isotropic turbulence was
almost entirely in terms of the spectral picture. It was not
until  the  extensive  measurements  of  higher-order  structure
functions by Anselmet et al. (in 1984) that the real-space
picture  became  of  interest,  along  with  the  concept  of
anomalous  exponents.

I would argue that we should go back to the term ‘Kolmogorov-
Obukhov spectrum’, as indeed was quite often done in earlier
years. We will develop this idea in the next post. All source
references for this piece will be found in the book [1].

[1]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.


