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To lay a foundation for the present piece, we will first
consider the joint Kolmogorov-Obukhov picture in more detail.
For  completeness,  we  should  begin  by  mentioning  that
Kolmogorov also used the Karman-Howarth equation, which is the
energy balance equation connecting the second- and third-order
structure functions, to derive the so-called `$4/5$’ law for
the third-order structure function.This procedure amounts to a
de facto closure, as the time-derivative is neglected (an
exact step in our present case, as we are restricting our
attention to stationary turbulence) and the term involving the
viscosity vanishes in the limit of infinite Reynolds number.
This  is  often  referred  to  as  `the  only  exact  result  in
turbulence theory’; but increasingly it is being referred to,
perhaps  more  correctly,  as  `the  only  asymptotically  exact
result in turbulence’.

As part of this work, he also assumed that the skewness was
constant; and this provided a relationship between the second-
and  third-order  structure  functions  which  recovered  the
`$2/3$’ law. It is interesting to note that Lundgren used the
method of matched asymptotic expansions to obtain both the
`$4/5$’  and  `$2/3$’  laws,  without  having  to  make  any
assumption about the skewness. This work also offered a way of
estimating the extent of the inertial range in real space.

However,  the  Karman-Howarth  equation  is  local  in  the
independent  variables  and  therefore  does  not  describe  an
energy cascade. In contrast, the Lin equation (which is just
its Fourier transform) shows that all the degrees of freedom
in turbulence are coupled together. It takes the form, for the
energy  spectrum  $E(k,  t)$,  in  the  presence  of  an  input
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spectrum  $W(k)$:  \begin{equation}\frac{\partial
E(k,t)}{\partial  t}  =  W(k)+  T(k,t)-  2\nu_{0}k^{2}E(k,
t),\label{lin}\end{equation} where $\nu_{0}$ is the kinematic
viscosity  and  the  transfer  spectrum  $T(k,t)$  is  given
by\begin{eqnarray}T(k,t)  &  =  &  2\pi  k^{2}\int  d^{3}j\int
d^{3}l\,\delta(\mathbf{k}-\mathbf{j}-
\mathbf{l})M_{\alpha\beta\gamma}(\mathbf{k})\nonumber  \\  &
\times  &
\left\{C_{\beta\gamma\alpha}(\mathbf{j},\mathbf{l},\mathbf{-
k};t)-C_{\beta\gamma\alpha}(\mathbf{-j},\mathbf{-
l},\mathbf{k};t)\right\},\end{eqnarray}with  \begin{equation}
M_{\alpha\beta\gamma}(\mathbf{k})=-
\frac{i}{2}\left[k_{\beta}P_{\alpha\gamma}(\mathbf{k})+k_{\gam
ma}P_{\alpha\beta}(\mathbf{k})\right],\label{M}\end{equation}
and  the  projector  $P_{\alpha\beta}(\mathbf{k})$  is
\begin{equation}P_{\alpha\beta}(\mathbf{k})=\delta_{\alpha\bet
a}-\frac{k_{\alpha}k_{\beta}}{|\mathbf{k}|^{2}},
\end{equation}where  $\delta_{\alpha\beta}$  is  the  Kronecker
delta, and the third-order moment $C_{\beta\gamma\alpha}$ here
takes  the  specific  form:  \begin{equation}
C_{\beta\gamma\alpha}(\mathbf{j},\mathbf{l},\mathbf{-
k};t)=\langle
u_{\beta}(\mathbf{j},t)u_{\gamma}(\mathbf{l},t)u_{\alpha}(\mat
hbf{-k},t) \rangle.\end{equation}

At  this  stage  we  also  define  the  flux  of  energy
$\Pi(\kappa,t)$ due to inertial transfer through the mode with
wavenumber  $k=\kappa$.  This  is  given  by:
\begin{equation}\Pi(\kappa,t)  =
\int_{\kappa}^{\infty}\,dk\,T(k,t).\end{equation}
Further discussion and details may be found in Section 4.2 of
the book [1].
We  now  have  a  rather  simple  picture.  In  formulating  our
problem, the shape of the input spectrum should be chosen to
be peaked near the origin, such that higher wavenumbers are
driven  by  inertial  transfer,  with  energy  being  dissipated
locally by the viscosity. Then we can define the rate at which



stirring forces do work on the system by: \begin{equation}
\int_0^\infty \, W(k)\, dk = \varepsilon_W. \end{equation}

Obukhov’s idea of the constant inertial flux can be expressed
as follows. As the Reynolds number is increased, the transfer
rate, as given by equation (6), will also increase and must
reach a maximum value, which in turn must be equal to the
viscous  dissipation.  Thus  we  introduce  the  symbol
$\varepsilon_T$  for  the  maximum  inertial  flux  as:
\begin{equation}\varepsilon_T  =
\Pi_{\mbox{max}},\end{equation} and for stationary turbulence
at sufficiently high Reynolds number, we have the limiting
condition:  \begin{equation}\varepsilon  =  \varepsilon_T  =
\varepsilon_W.\end{equation}

Thus the loose idea of a local cascade involving eddies in
real space is replaced by the precisely formulated concept of
scale invariance of the inertial flux in wavenumber space. As
is  well  known,  this  picture  leads  directly  to  the  $-5/3$
energy spectrum in the limit of large Reynolds numbers.
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