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In  last  week’s  blog,  I  discussed  the  Kraichnan  and  Wyld
approaches to the turbulence closure problem. These field-
theoretic  approaches  are  examples  of  RPTs,  while  the
pioneering theory of Edwards [1] is a self-consistent field
theory.  An  interesting  difference  between  them  is  the
different  ways  in  which  they  make  use  of  a  Gaussian  (or
normal) base distribution. Any theory is going to begin with a
Gaussian distribution, because it is tractable. We know how to
express all its moments in terms of the second-order moment.
Of  course,  we  also  know  that  it  predicts  that  odd  order
moments are zero, so some trick must be employed to get it to
tell us anything about turbulence.

As we did last week, we begin with the Fourier-transformed
solenoidal  Navier-Stokes  equation  (NSE)  written  in  an
extremely  compressed  notation  as:  \begin{equation}
\mathcal{L}_{0,k}u_k  =  \lambda  M_{0,k}u_ju_{k-
j},\end{equation} where the linear operator $\mathcal{L}_{0,k}
= \partial /\partial t + \nu_0 k^2$, $\nu_0$ is the kinematic
viscosity of the fluid, $M_{0,k}$ is the inertial transfer
operator  which  contains  the  eliminated  pressure  term,  and
$\lambda$ is a book-keeping parameter which is used to keep
track of terms during an iterative solution.
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Now let us consider the closure problem. We multiply equation
(1)  through  by  $u_{-k}$  and  average,  to  obtain:
\begin{equation}  \mathcal{L}_{0,k}\langle  u_k  u_{-k}\rangle=
\lambda  M_{0,k}\langle  u_ju_{k-j}u_{-k}\rangle,\end{equation}
where the angle brackets denote an average. Evidentally, if we
evaluate the averages here with a Gaussian pdf, the triple
moment vanishes (trivially, by symmetry)

Then we set up a perturbation-type approach by expanding the
velocity field in powers of $\lambda$ as: \begin{equation} u_k
=  u^{(0)}_k  +  \lambda  u^{(1)}_k  +  \lambda^2  u^{(2)}_k  +
\lambda^3 u^{(3)}_k + \dots, \end{equation} where $u^{(0)}_k$
is a velocity field with a Gaussian distribution. The general
procedure has two steps. First, substitute the expansion (3)
into the right hand side of equation (1) and calculate the
coefficients  iteratively  in  terms  of  the  $u^{(0)}_k$.
Secondly, substitute the explicit form of the expansion, now
entirely expressed in terms of the $u^{(0)}$ into the right
hand side of equation (2), and evaluate the averages to all
orders, using the rules for a Gaussian distribution. If we
denote  the  inverse  of  the  linear  operator  by
$\mathcal{L}^{-1}_{0,k}  \equiv  R_{0,k}$,  and  the  Gaussian
zero-order covariance by $\langle u_k u_{-k}\rangle=C_{0,k}$,
then the triple moment on the right hand of equation (2) can
be  written  to  all  orders  in  products  and  convolutions  of
$R_{0,k}$ and $C_{0,k}$.

Kraichnan introduced renormalization in this problem by making
the replacements: \[R_{0,k}\rightarrow R_{k} \quad \mbox{and}
\quad  C_{0,k}  \rightarrow  C_k,\]  to  all  orders  in  the
perturbation expansion of the triple-moment in (2). This step
involves partial summations of the perturbation expansion in
different classes of terms.
At this point it is worth noting that what happens here is
rather like in a direct-numerical simulation of the NSE. There
we begin with a Gaussian initial field. As time goes on, the
nonlinear term induces couplings between modes and the system



moves to a field which is representative of Navier-Stokes
turbulence. Of course the initial distribution is constrained
in this case to give the total energy that we require in the
simulation. Note that the zero-order field in perturbation
theory  is  in  principle  present  at  all  times  and  is  not
constrained in this way.

In  contrast,  what  Edwards  introduced  was  a  perturbation
expansion  of  the  probability  distribution  function  of  the
velocity field, not of the velocity field itself. For this
reason, he did not work directly with the NSE but instead used
it  to  derive  a  Liouville  equation  for  the  probability
distribution $P[u,t]$. It should be noted that the Liouville
equation, although containing the nonlinearity of the velocity
field, is nevertheless a linear equation for the pdf. Edwards
then  expanded  $P[u,t]$,  the  exact  pdf,  as  follows:
\begin{equation}P[u,t]  =  P^{0}[u]  +  \epsilon  P^{1}[u,t]  +
\epsilon^2 P^{2}[u,t] + \mathcal{O}(\epsilon^3),\end{equation}
where $P^{0}[u]$ is a Gaussian distribution. The significant
step here is to demand that the zero-order pdf gives the same
result for the second-order moment as the exact pdf. That is,
\begin{equation}\int \, P^{(0)}[u] \, u_ku_{-k} \mathcal{D}u =
\int  \,  P[u,t]  \,  u_ku_{-k}  \mathcal{D}u  \equiv  C_k.
\end{equation}

This is in fact the basis of the self-consistency requirement
in  the  theory.  For  further  details  the  interested  reader
should consult either of the books referenced below as [1] and
[2]. The Edwards method [3] does not rely on partially summing
infinite perturbation series, nor is it like the functional
formalisms which are equivalent to such summation procedures.
Instead  it  relies  on  the  fact  that  the  measured  pdf  in
turbulence is not very different from a Gaussian. In this
respect, it is encouraging that it gives similar results to
the  RPTs.  This  resemblance  is  heightened  in  the  recent
derivation of the LET theory as a two-time SCF [4], thus
extending the Edwards method.
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