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Vacation post No. 2: I will be out of the virtual office until
Monday 19 April.

Recently, someone who posted a comment on one of my early
blogs about spectral methods (see the post on 20 February
2020), commented that a certain person has said `spectral
methods obscure the physics of turbulence’. They asked for my
opinion on this statement and I gave a fairly robust and
concise reply. However, on reflection, I thought that a more
nuanced response might be helpful. As the vast majority of
turbulence researchers work in real space, it seems probable
that many would share that sentiment, or something very like
it.

In fact, I will begin by challenging the second part of the
statement. What precisely is meant by the phrase `the physics
of turbulence’? In order to answer this question, let us begin
by examining the concept of the turbulence problem in both
real space and Fourier wavenumber space. Note that in what
follows, all dependent variables are understood to be per unit
mass of fluid, and we restrict our attention to incompressible
fluid motion.

In  real  space,  we  have  the  velocity  field
$\mathbf{u}(\mathbf{x},t)$, which satisfies the Navier-Stokes
equation  (NSE).  This  equation  expresses  conservation  of
momentum and is local in $x$. It is also nonlinear and is
therefore, in general, insoluble. From it we can derive the
Karman-Howarth equation (KHE), which expresses conservation of
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energy and relates the second-order moment to the third-order
moment. This is also local in $x$, and is also insoluble, as
it embodies the statistical closure problem of turbulence. If
we wish, we can change from moments to structure functions,
but the KHE remains local in $r$, the distance between the two
measuring  points.  This  formulation  gives  no  hint  of  a
turbulence  cascade  as  it  is  entirely  local  in  nature.

The situation is radically different in Fourier wavenumber
($k$)  space.  Here  we  have  a  velocity  field
$\mathbf{u}(\mathbf{k},t)$ which now satisfies the NSE in $k$-
space. This is still insoluble, and when we derive the Lin
equation from it (or by Fourier transformation of the KHE),
this again expresses conservation of energy, and is again
subject to the closure problem. However, there is a major
difference. As pointed out by Batchelor [1], Taylor introduced
the Fourier representation in order to turn turbulence into a
problem  in  statistical  physics,  with  the
$\mathbf{u}(\mathbf{k},t)$ playing the part of the degrees of
freedom. The nonlinear term takes the form of a convolution in
wavenumber space and this couples each degree of freedom to
every other. In the absence of viscosity, this process leads
to equipartition, rather as in an ideal gas. However, the
viscous term is symmetry-breaking, with its factor of $k^2$
skewing its effect to high wavenumbers, so that energy must
flow through the modes of the system from low wavenumbers to
high. We may complete the picture by injecting energy at low
wavenumbers. The result is a physical system which has been
discussed in many papers and books and has been studied by
theoretical physicists over the decades since the 1950s. In
short, Fourier transformation reveals a physical system which
is not apparent from the equations of motion in real space.

What, then, do those working in real space mean by the physics
of turbulence? Presumably they rely on ideas about vortex
motion, as established by flow visualisation; and here the
difficulty  lies.  Richardson  put  forward  the  concept  of  a



cascade  in  terms  of  `’whirls”  (not,  incidentally,  whorls!
[2]);  and  certainly  this  has  gripped  the  imagination  of
generations of workers in the field. In a general, qualitative
way  it  is  easy  to  understand;  and  one  can  envisage  the
transfer of eddying motions from large scales to small scales.
But  when  it  comes  to  a  quantitative  point  of  view,  the
resulting  picture  is  very  vague  and  imprecise.  Of  course
attempts  have  been  made  to  make  it  more  precise  and
researchers have considered assemblies of well-defined vortex
motions.  This  is  a  perfectly  reasonable  way  for  fluid
dynamicists to go about things, but it involves a considerable
element of guess work. In contrast, Fourier wavenumber space
gives a precise representation of the physical system and
essentially  formulates  the  basic  problem  as  a  statistical
field theory.

So, spectral methods actually expose the underlying physics of
turbulence, rather than obscuring it. It is my view that those
who are not comfortable with them must necessarily have a very
restricted and limited understanding of the subject. I shall
illustrate that in my next post.
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