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Vacation post No. I: I will be out of the office until Monday
19 April.

In my previous post, I argued that there seems to be really no
justification for regarding the stirring forces that we invoke
in isotropic turbulence as mysterious, at least in the context
of statistical physics. However, when I was thinking about it,
I remembered that Kraichnan had introduced stirring forces in
quite a different way from Edwards and it occurred to me that
this might be worth looking at again. Edwards had introduced
them  in  order  to  study  stationary  turbulence,  but  in
Kraichnan’s case they were central to the basic idea for his
turbulence theory. In that way, Kraichnan’s formulation was
more in the spirit of dynamical systems theory, rather than
statistical physics.

Following  Kraichnan,  let  us  consider  the  case  where  the
Navier-Stokes  equation  (NSE)  is  subject  to  random  force
$f_{\alpha}(\mathbf{k},t)$, where the Greek indices take the
usual values of $1,\,2,\,3$ corresponding to Cartesian tensor
notation.  If  the  force  undergoes  a  fluctuation
\[f_{\alpha}(\mathbf{k},t)  \rightarrow
f_{\alpha}(\mathbf{k},t)  +\delta  f_{\alpha}(\mathbf{k},t),\]
then  we  may  expect  the  velocity  field  to  undergo  a
corresponding  fluctuation  \[u_{\alpha}(\mathbf{k},t)
\rightarrow  u_{\alpha}(\mathbf{k},t)  +\delta
u_{\alpha}(\mathbf{k},t).\]  If  the  increments  are  small
enough, we may neglect the second order of small quantities,
then  we  may  introduce  the  infinitesimal  response  function
$\hat{R}_{\alpha\beta}(\mathbf{k};t,t’)$,  such  that  \[\delta
u_{\alpha}(\mathbf{k},t)  =  \int_{-
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\infty}^t\,\hat{R}_{\alpha\beta}(\mathbf{k};t,t’)\delta
f_{\beta}(\mathbf{k},t’)\,dt’.\]

Kraichnan linearised the NSE in order to derive a governing
equation  for  the  infinitesimal  response  function.  Then  he
introduced  the  ensemble-averaged  form
\[\langle\hat{R}_{\alpha\beta}(\mathbf{k};t,t’)\rangle
=R_{\alpha\beta}(\mathbf{k};t,t’),\]  where
\[R_{\alpha\beta}(\mathbf{k};t,t)=1,\]  in  order  to  make  a
statistical closure. The result was the Direct Interaction
Approximation (DIA) and it is worth noting in passing that its
derivation  contains  the  step  $\langle  uu\hat{R}  \rangle  =
\langle uu \rangle \langle \hat{R}\rangle$, which makes the
theory a mean-field approximation.

The failure of DIA was attributed by Kraichnan to the use of
an Eulerian coordinate system and he responded by generalising
DIA to what he called Lagrangian-history coordinates, leading
to a much more complicated formulation. This step inspired
others to DIA-type methods in more conventional Lagrangian
coordinates.  However,  the  fact  remains  that  the  purely
Eulerian LET (or local energy transfer) does not fail in the
same way as DIA. It is worth noting that unsuccessful theories
in Eulerian coordinates are invariably Markovian in wavenumber
(this should be distinguished from a Markovian property in
time).

An  alternative  explanation  for  the  failure  of  Markovian
theories  is  that  the  basic  ansatz,  in  the  steps  outlined
above, may not identify the correct response for turbulence.
In dynamical systems the dissipation occurs where the force
acts. In turbulence it occurs at a distance in space and time.
When  the  force  acts  to  stir  the  fluid,  the  energy  is
transferred to higher wavenumbers by a conservative process,
until  it  comes  into  detailed  balance  with  the  viscous
dissipation. Arguably the system response needs to include
some further effect, connecting one velocity mode to another,
as happens in the LET theory [1].



In all theories, the direct action of the stirring force is
both to create the modes and then populate them with energy.
In DIA, the way in which energy is put into the modes (i.e.
the input term) can be calculated exactly by renormalized
perturbation theory in terms of the ensemble-averaged response
function . However, the general closure of the statistical
equations  for  the  velocity  moments  is  equivalent  to  an
assumption that the same procedure will work for it, which is
really  only  an  assumption.  So  it  may  be  that  it  is  the
turbulence response which is mysterious, and not the stirring
forces as such.

General treatments of these matters will be found in the books
[2,3]. It should be noted that I’ve used a modern notation for
the response function (e.g. see [4]).
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