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forces
The mysterious stirring forces
In the late 1970s there was an upsurge in interest in the
turbulence problem among theoretical physicists. This arose
out of the application of renormalization group (RG) methods
to the problem of stirred fluid motion. As this problem was
restricted to a very low wavenumber cutoff, these approaches
had nothing to say about real fluid turbulence. Nevertheless,
the work on RG stimulated a lot of speculative discussion, and
one paper referred to `the mysterious stirring forces’. I
found this rather unsettling, because I had been familiar with
the  concept  of  stirring  forces  from  the  start  of  my  PhD
project in 1966. Why, I wondered, did some people find them
mysterious?

As time passed, I came to the conclusion that it was just lack
of familiarity on the part of these theorists, although they
seemed quite happy to launch into speculation on a subject
that  they  knew  very  little  about.  (Well,  it  was  just  a
conference paper!) So I was left with the feeling that one day
it might be worth writing something to debunk this comment.
Recently it occurred to me that it would make a good topic for
a blog.

The standard form used nowadays for the stirring forces was
introduced by Sam Edwards in 1964 and has its roots in the
study  of  Brownian  motion,  and  similar  problems  involving
fluctuations about equilibrium. Let us consider the motion of
a colloidal particle under the influence of molecular impacts
in a liquid. For simplicity, we specialise to one-dimensional
motion with velocity $u$. The particle will experience Stokes
drag with coefficient $\eta$, per unit mass. Accordingly, we
can use Newton’s second law to write its macroscopic equation
of motion as: \begin{equation} \partial u/\partial t =-\eta \,
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u. \end{equation} At the microscopic level, the particle will
experience the individual molecular impacts as a random force
$f(t)$, say. So the microscopic equation of motion becomes:
\begin{equation}\partial  u/\partial  t  =-\eta  \,  u  +  f(t).
\end{equation}  This  equation  is  known  as  the  Langevin
equation. In order to solve it, we need to specify $f$ in
terms of a physically plausible model.

We begin by noting that the average effect of the molecular
impacts on the colloidal particle must be zero, thus we have:
\begin{equation}\langle f(t) \rangle =0. \end{equation} As a
result, the average of equation (2) reduces to equation (1),
which is consistent. Then in order to represent the irregular
nature of the molecular impacts, we assume that $f(t)$ is only
correlated with itself at very short times $t\leq t_c$, where
$t_c$ is the duration of a collision. We can express this in
terms of the autocorrelation function $w$ as: \begin{equation}
\langle  f(t)f(t’)  \rangle  =  w(t-t’),  \end{equation}  and
\begin{equation}  W(t)  =  \int_0^t\,w(\tau)\,d\tau,
\end{equation} where \begin{equation} W(\tau)\rightarrow W =
\mbox{constant}.\end{equation}

We can go on to solve the Langevin equation (2) for the short-
time and long-time behaviour of the particle velocity $u(t)$,
much  as  in  Taylor’s  Lagrangian  analysis  of  turbulent
diffusion.  We  can  also  derive  the  fluctuation-dissipation
relation: see reference [1] for details.

In his self-consistent field theory of turbulence, Edwards
drew various analogies with the theory of Brownian motion [2].
In particular, he went further than in equations (4) to (6),
and chose the stirring forces to be instantaneously correlated
with themselves; or: \begin{equation}w(t-t’) = W \delta(t-t’),
\end{equation} where $\delta$ is the Dirac delta function. In
the study of stochastic dynamical systems, this is known as
`white noise forcing’. It allows one to express the rate at
which the stirring force does work on the turbulent fluid in
terms of the autocorrelation of the stirring forces [3].



It  also  provides  a  criterion  for  the  detection  of  `fake
theories’. These are theories which are put out by people with
skill in quantum field theory and which purport to be theories
of  turbulence.  Such  theories  do  not  engage  with  the
established body of work in the theory of turbulence, nor do
they mention how they overcome the problems that have proved
to be a stumbling block for legitimate theories. Invariably,
they attribute the purpose of the delta function to be to
maintain Galiean invariance and clearly do not know what it is
actually used for. In fact, the Navier-Stokes equations are
trivially Galilean-invariant and adding an external force to
them cannot destroy that [4].

[1] W. David McComb. Study Notes for Statistical Physics: A
concise, unified overview of the subject. Bookboon, 2014.
[2] S. F. Edwards. The statistical dynamics of homogeneous
turbulence. J. Fluid Mech., 18:239, 1964.
[3] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[4]  W.  D.  McComb.  Galilean  invariance  and  vertex
renormalization.  Phys.  Rev.  E,  71:37301,  2005.

Is the entropy of turbulence
a maximum?
Is the entropy of turbulence a maximum?
In  1969  I  published  my  first  paper  [1],  jointly  with  my
supervisor Sam Edwards, in which we maximised the turbulent
entropy, defined in terms of the information content, in order
to obtain a prescription for $\omega(k)$, the renormalized
decay  time  for  the  energy  contained  in  the  mode  with
wavenumber  $k$.  Of  course,  in  statistical  mechanics,  one
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associates  the  maximum  of  the  entropy  with  thermal
equilibrium. So, in the circumstances, we were very frank
about possible problems with this approach, having actually
stated  in  the  title  that  our  system  was  ‘far  from
equilibrium’. Before we examine this aspect further, it may be
of interest to look at the background to the work.

By  the  mid-nineteen  sixties,  there  had  been  a  number  of
related theories of turbulence, but the most important were
probably Kraichnan’s direct-interaction approximation (DIA) in
1959 and the Edwards self-consistent field theory in 1964. At
this time there seems to have been a mixture of excitement and
frustration. It had become clear from experiment that the
Kolmogorov $-5/3$ power law (or something very close to it)
was the correct inertial-range form, and none of the various
theories  was  compatible  with  it.  Kraichnan  ultimately
concluded that he needed to change to a so-called Lagrangian-
history coordinatate system, but otherwise could retain all
the features of the DIA; whereas Edwards concluded that he
needed  to  find  a  different  way  of  choosing  the  response
function, which in his case depended on $\omega(k)$. In my
view,  and  irrespective  of  the  merits  or  otherwise  of  the
‘maximum entropy’ method, Edwards made the right decision.

When I began my PhD research in 1966, my first job was to work
out  the  turbulent  entropy,  using  Shannon’s  definition,  in
terms  of  the  turbulent  probability  distribution;  and  then
carry  out  a  functional  differentiation  with  respect  to
$\omega(k)$, in order to establish the presence of a maximum.
What I didn’t know, was that Sam had himself carried out this
calculation but had got stuck. In order to take the limit of
infinite Reynolds numbers, he had to show that his theory was
well behaved at three particular points in wavenumber space:
$k=0$, $k=\infty$ and $|\mathbf{k}+\mathbf{j}|=0$, where $j$
is a dummy wavenumber. He had been able to show the first two,
but not the third. Not knowing that there was a problem, I
soon discovered it, but by means of a trick involving dividing



up the range of integration, I managed to show that it was
well behaved. However, the prediction of the value of the
Kolmogorov  constant  was  not  good,  and  this  was  not
encouraging.

In later years, when I had a lot more experience of both
turbulence and statistical physics, I thought more critically
about this way of treating turbulence. The maximum entropy
method is the canonical way of solving problems in thermal
equilibrium where there are only either weak or very local
interactions. If we take the para-ferromagnetic transition as
an example, we can think of the temperature being reduced and
an assembly of molecular magnets (i.e. spins on a lattice)
tending  to  line  up  as  the  effective  coupling  increases.
However, this process would be swamped by the imposition of a
powerful  external  magnetic  field.  Similarly,  the  molecular
diffusion process can be swamped by vigorous stirring. In the
case  of  turbulence,  it  is  possible  to  study  absolute
equilibrium  ensembles  by  considering  an  initially  stirred
inviscid fluid in a finite system. If we replace the Euler
equation by the Navier-Stokes equation, then the effect of the
viscosity is symmetry-breaking and the system is dominated by
a flow of energy through the modes.

This, of course is a truism of statistical physics: a system
is either controlled by entropy or energy conservation. In the
case of turbulence, it is always the latter. Turbulence is
always  a  driven  phenomenon.  So  while  perhaps  entropy  is
actually a maximum with respect to variation of $\omega(k)$,
it may be too broad a maximum allow an accurate determination
of $\omega(k)$. Also, it is worth bearing in mind, that it is
not precisely turbulence but the statistical theory we are
approximating  it  by,  which  needs  to  show  the  requisite
behaviour.

In any case, in 1974 I published my local energy transfer
theory of turbulence [2], which is in good accord with the
basic physics of the turbulent cascade.



[1] S. F. Edwards and W. D. McComb. Statistical mechanics far
from equilibrium. J.Phys.A, 2:157, 1969.
[2] W. D. McComb. A local energy transfer theory of isotropic
turbulence. J.Phys.A, 7(5):632, 1974.

Analogies  between  critical
phenomena and turbulence: 2
Analogies between critical phenomena and turbulence: 2

In  the  previous  post,  I  discussed  the  misapplication  to
turbulence of concepts like the relationship between mean-
field theory and Renormalization Group in critical phenomena.
This week I have the concept of ‘anomalous exponents’ in my
sights!

This term appears to be borrowed from the concept of anomalous
dimension in the theory of critical phenomena, so we start
from a consideration of dimension, bearing in mind that the
dimension  of  the  space  can  be  anything  from  $d=1$  up  to
$d=\infty$, and is not necessarily an integer. In critical
phenomena  it  is  usual  to  define  three  different  kinds  of
dimensionality, as follows:

[a] Scale dimension. This is defined as the dimension of a
physical quantity as established from the effect of a scaling
transformation. Confusingly, this is normally just referred to
as dimension.

[b]  Normal  (canonical)  dimension.  This  is  the  (scale)
dimension as established by simple dimensional analysis.

[c] Anomalous dimension. This is the dimension as established
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under RG transformation.

In this context, normal dimension is regarded as the naïve
dimension and anomalous dimension is regarded as the actual or
correct dimension. In turbulence we don’t have dimensionality
as a playground, so the merry band of would-be turbulence
theorists have extended the concept to the exponents of power-
law forms of the moments of the velocity field plotted against
order. The Kolmogorov forms (dimensional analysis) are seen as
canonical and the actual (i.e. measured) exponents are seen as
anomalous. The former are seen as wrong and the latter as
correct.  Naturally,  the  true  believers  in  intermittency
corrections  have  seized  on  this  nomenclature  as  adding
something to their case. (Also, see my post of 21 January
2021).

Let us actually apply the concept of scale dimension $d_s$
(say) in three-dimensional turbulence (i.e. $d=3$), using the
procedures from critical phenomena (see Section 9.3 of [1]) to
the energy spectrum $E(k)$. That is, we express the spectrum
in terms of the total energy $E$, thus \[\int\,d^3k\,E(k) = E
\quad \mbox{hence} \quad E(k) \sim E\,k^{-3}.\] So, bearing in
mind that wavenumber has dimensions of inverse length, it
follows that the canonical scale dimension is $d_s = 3$ in
$d=3$.

If we now consider the Kolmogorov spectrum based on scale
invariance  and  an  inertial  transfer  rate  $\varepsilon_T$,
dimensional  analysis  gives  us  \[E(k)  \sim
\varepsilon_T\,k^{-5/3} .\] As this result can also be got
from RG transformation, properly formulated for macroscopic
fluid turbulence, and employing rational approximations (see
[2] – [5]), it follows that K41 corresponds to the anomalous
dimension $d_E = 5/3$. So much for inept comparisons with
critical phenomena.

[1]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.
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Analogies  between  critical
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Analogies between critical phenomena and turbulence: 1
In the late 1970s, application of Renormalization Group (RG)
to stirred fluid motion led to an upwelling of interest among
theoretical  physicists  in  the  possibility  of  solving  the
notorious turbulence problem. I remember reading a conference
paper which included some discussion that was rather naïve in
tone. For instance, why did turbulence theorists study the
energy  spectrum  rather  than  something  else?  Also,  rather
unsettlingly,  there  was  a  reference  to  the  ‘mysterious
stirring forces’ (sic): I shall return to that comment in a
future post. However, although no turbulence theory emerged
from this activity, a way of thinking did, and this found a
receptive  audience  in  those  members  of  the  turbulence
community  who  believe  in  intermittency  corrections.  In  my
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view, one set of views is as unjustified as the other, and I
shall now explain why I think this.

To understand how these views came about, we need to consider
the  background  in  critical  phenomena.  During  the  1960s,
theorists in this area began to use concepts like scaling and
self-similarity to derive exact relationships between critical
exponents. (In passing, I note that in fluid dynamics these
tools had already been in active use for more than half a
century!) In this way, the six critical exponents of a typical
system could be reduced to just two to be determined. At first
the gap was bridged by mean-field theory, but then RG came
along and the problem was solved.

It  is  important  to  know  that  RG  can  be  viewed,  in  some
respects, as a correction to mean-field theory. As a result,
theorists in this field essentially ended up taking the view:
‘mean-field theory, bad! RG good!’, and this had a tendency to
spill over into other areas as a sort of judgement. In general
this was the attitude during the 1980s/90s, and few paused to
reflect  that  other  phenomena  might  belong  to  a  different
universality class. For instance, should the self-consistent
field theory of multi-electron atoms be ruled out, because RG
is  better  than  mean-field  theory  at  describing  the  para-
ferromagnetic  phase  transition?  Fortunately,  this  sort  of
thinking has presumably died out by now, but it has left an
unhelpful residue in turbulence theory.

One form of this is the assertion that the Kolmogorov ‘$-5/3$’
energy  spectrum  is  a  mean-field  theory,  and  that  an  RG
calculation  would  lead  to  an  exponent  of  the  form
‘$-5/3+\mu$’;  precisely  what  the  ‘intermittency  correction’
enthusiasts had been saying all along! The snag with this is
that the derivation of the Kolmogorov spectrum does not rely
on  a  mean-field  step,  nor  indeed  on  the  invariable
accompaniment of a self-consistent field step. In fact, this
can be a problem in critical phenomena. People tend to refer
loosely to mean-field theories, without mentioning that they



are also self-consistent theories. Actually in turbulence we
have  various  self-consistent  field  theories  which  do  not
predict the Kolmogorov exponent and one which does [1].
In my next post, I will develop this topic further. In the
meantime, a general background account of these matters may be
found in the book cited below as [2].
[1] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[2]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.


