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The mysterious stirring forces
In the late 1970s there was an upsurge in interest in the
turbulence problem among theoretical physicists. This arose
out of the application of renormalization group (RG) methods
to the problem of stirred fluid motion. As this problem was
restricted to a very low wavenumber cutoff, these approaches
had nothing to say about real fluid turbulence. Nevertheless,
the work on RG stimulated a lot of speculative discussion, and
one paper referred to `the mysterious stirring forces’. I
found this rather unsettling, because I had been familiar with
the  concept  of  stirring  forces  from  the  start  of  my  PhD
project in 1966. Why, I wondered, did some people find them
mysterious?

As time passed, I came to the conclusion that it was just lack
of familiarity on the part of these theorists, although they
seemed quite happy to launch into speculation on a subject
that  they  knew  very  little  about.  (Well,  it  was  just  a
conference paper!) So I was left with the feeling that one day
it might be worth writing something to debunk this comment.
Recently it occurred to me that it would make a good topic for
a blog.

The standard form used nowadays for the stirring forces was
introduced by Sam Edwards in 1964 and has its roots in the
study  of  Brownian  motion,  and  similar  problems  involving
fluctuations about equilibrium. Let us consider the motion of
a colloidal particle under the influence of molecular impacts
in a liquid. For simplicity, we specialise to one-dimensional
motion with velocity $u$. The particle will experience Stokes
drag with coefficient $\eta$, per unit mass. Accordingly, we
can use Newton’s second law to write its macroscopic equation
of motion as: \begin{equation} \partial u/\partial t =-\eta \,
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u. \end{equation} At the microscopic level, the particle will
experience the individual molecular impacts as a random force
$f(t)$, say. So the microscopic equation of motion becomes:
\begin{equation}\partial  u/\partial  t  =-\eta  \,  u  +  f(t).
\end{equation}  This  equation  is  known  as  the  Langevin
equation. In order to solve it, we need to specify $f$ in
terms of a physically plausible model.

We begin by noting that the average effect of the molecular
impacts on the colloidal particle must be zero, thus we have:
\begin{equation}\langle f(t) \rangle =0. \end{equation} As a
result, the average of equation (2) reduces to equation (1),
which is consistent. Then in order to represent the irregular
nature of the molecular impacts, we assume that $f(t)$ is only
correlated with itself at very short times $t\leq t_c$, where
$t_c$ is the duration of a collision. We can express this in
terms of the autocorrelation function $w$ as: \begin{equation}
\langle  f(t)f(t’)  \rangle  =  w(t-t’),  \end{equation}  and
\begin{equation}  W(t)  =  \int_0^t\,w(\tau)\,d\tau,
\end{equation} where \begin{equation} W(\tau)\rightarrow W =
\mbox{constant}.\end{equation}

We can go on to solve the Langevin equation (2) for the short-
time and long-time behaviour of the particle velocity $u(t)$,
much  as  in  Taylor’s  Lagrangian  analysis  of  turbulent
diffusion.  We  can  also  derive  the  fluctuation-dissipation
relation: see reference [1] for details.

In his self-consistent field theory of turbulence, Edwards
drew various analogies with the theory of Brownian motion [2].
In particular, he went further than in equations (4) to (6),
and chose the stirring forces to be instantaneously correlated
with themselves; or: \begin{equation}w(t-t’) = W \delta(t-t’),
\end{equation} where $\delta$ is the Dirac delta function. In
the study of stochastic dynamical systems, this is known as
`white noise forcing’. It allows one to express the rate at
which the stirring force does work on the turbulent fluid in
terms of the autocorrelation of the stirring forces [3].



It  also  provides  a  criterion  for  the  detection  of  `fake
theories’. These are theories which are put out by people with
skill in quantum field theory and which purport to be theories
of  turbulence.  Such  theories  do  not  engage  with  the
established body of work in the theory of turbulence, nor do
they mention how they overcome the problems that have proved
to be a stumbling block for legitimate theories. Invariably,
they attribute the purpose of the delta function to be to
maintain Galiean invariance and clearly do not know what it is
actually used for. In fact, the Navier-Stokes equations are
trivially Galilean-invariant and adding an external force to
them cannot destroy that [4].
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