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Compatibility of temporal spectra with Kolmogorov (1941): the
Taylor hypothesis.

Earlier this year I received an enquiry from Alex Liberzon,
who was puzzled by the fact that some people plot temporal
frequency spectra with a $-5/3$ power law, but he was unable
to reconcile the dimensions. This immediately took me back to
the  1970s  when  I  was  doing  experimental  work  on  drag-
reduction,  and  we  used  to  measure  frequency  spectra  and
convert  them  to  one-dimensional  wavenumber  spectra  using
Taylor’s hypothesis of frozen convection [1]. It turned out
that Alex’s question was more complicated than that and I will
return to it at the end. But I thought my own treatment of
this topic in [1] was terse, to say the least, and that a
fuller treatment of it might be of general interest. It also
has the advantage of clearing the easier stuff out of the way!

Consider  a  turbulent  velocity  field  $u(x,t)$  which  is
stationary and homogeneous with rms value $U$. According to
Kolmogorov  (1941)  [2],  the  mean  square  variation  in  the
velocity field over a distance $r$ from a point $x$ is given
by:\begin{equation}\langle  \Delta  u^2_r  \rangle  \sim
(\varepsilon r)^{2/3}.\end{equation} If we now consider the
turbulence to be convected by a uniform velocity $U_c$ in the
$x$-direction,  then  the  K41  result  for  the  mean  square
variation  in  the  velocity  field  over  an  interval  of  time
$\tau$ at a point $x$ is given by: \begin{equation}\langle
\Delta  u^2_\tau  \rangle  \sim  (\varepsilon
U_c\tau)^{2/3}.\end{equation}The  dimensional  consistency  of
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the two forms is obvious from inspection.

Next let us examine the dimensions of the temporal and spatial
spectra. We will use the angular frequency $\omega = 2\pi f$,
where  $f  $  is  the  frequency  in  Hertz,  in  order  to  be
consistent  with  the  definition  of  wavenumber  $k_1$,  where
$k_1$ is the component of the wavevector in the direction of
$x$.  Integrating  both  forms  of  the  spectrum,  we  have  the
condition: \begin{equation} \int^\infty_0 E(\omega) d\omega =
\int_0^\infty E_{11}(k_1) dk_1 = U^2. \end{equation} Evidently
the dimensions are given by: \begin{equation}\mbox{Dimensions
of}\,  E(\omega)d\omega  =  \mbox{Dimensions  of}\,  E_{11}(k_1)
dk_1 = L^2 T^{-2};\end{equation} or velocity squared.

Then  we  introduce  Taylor’s  hypothesis  in  the  form:
\begin{equation}  \frac{\partial}{\partial  t}  =  U_c
\frac{\partial}{\partial x}, \quad \mbox{thus} \quad \omega =
U_c  k_1;\end{equation}  and  hence:  \begin{equation}k_1=
\frac{\omega}{U_c}  \quad  \mbox{and}  \quad  dk_1  =
\frac{d\omega}{U_c}.  \end{equation}
The  Kolmogorov  wavenumber  spectrum  (in  the  one-dimensional
form  that  is  usually  measured)  is  given
by:\begin{equation}E_{11}(k_1)  =  \alpha_1  \varepsilon^{2/3}
k^{-5/3}_1 dk_1.\end{equation}We should note that $\alpha_1$
is the constant in the one-dimensional spectrum and is related
to  the  three-dimensional  form  $\alpha$  by  $\alpha_1  =
(18/55)\alpha $. Substituting for the wavenumbers from (6)
into  (7)  we  find:\begin{equation}  E_{11}(k_{1})dk_{1}  =
\alpha_1  (\varepsilon  U_c)^{2/3}\omega^{5/3}  d\omega  \equiv
E(\omega)d\omega, \end{equation} which is easily shown to have
the correct dimensions of velocity squared.

After seeing this analysis, Alex came back with: but what
about  when  the  field  is  homogeneous  and  isotropic,  with
$U_c=0$? That’s a very good question and takes us into a topic
which originated with Kraichnan’s analysis of the failure of
DIA in (1964) [1]: the importance of sweeping effects on the
decay of the velocity correlation. There are now numerous



papers which address this topic and they continue to appear.
So it does not give the impression of being settled. From my
point of view, this is important in the context of closure
approximations;  but  I  understand  that  the  answer  to  the
question of $f^{-5/3}$ or $f^{-2}$ depends on the importance
or otherwise of sweeping effects.

I intend to return to this, but not necessarily next week!

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2] A. N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large Reynolds numbers.
C. R. Acad. Sci. URSS, 30:301, 1941.

The  concept  of  universality
classes  in  critical
phenomena.
The concept of universality classes in critical phenomena.
The universality of the small scales, which is predicted by
the Richardson-Kolmogorov picture, is not always observed in
practice;  and  in  the  previous  post  I  conjectured  that
departures from this might be accounted for by differences in
the spatial symmetry of the large scale flow. To take this
idea a step further, I now wonder whether it would be worth
exploring  how  the  idea  of  universality  classes  could  be
applied to the turbulent cascade? First, I should explain what
universality classes actually are.

In the study of critical phenomena, we are concerned with
changes  of  phase  or  state  which  can  occur  at  a  critical
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temperature,  which  is  invariably  denoted  by  $T_c$.  For
instance, the transition from liquid to gas, or the transition
from para- to ferromagnetism. In general, it is found that the
thermodynamic  variables  (e.g.  heat  capacity,  magnetic
susceptibility) of a system either tend to zero, or tend to
infinity, as the system approaches the critical temperature.
If we represent any such macroscopic variable by $F(T)$ and
introduce the reduced temperature $\Theta_c$ by \[\Theta_c =
\frac{T-T_c}{T_c}.\] Then, as $T\rightarrow T_c$ and $\Theta_c
\rightarrow 0$, we have \[F(\Theta_c) = A \Theta^{-n},\] where
$A$ is a constant and $n$ is the critical exponent. Obviously
the  critical  exponent  will  be  negative  when  $F(0)=0$  and
positive when $F(0)=\infty$.

Here  the  constant  $A$  and  the  critical  temperature  $T_c$
depend on the details of the system at the molecular level and
therefore vary from one system to another. These quantities
must be determined experimentally. However, in practice it is
found that sometimes different systems have the same values of
critical  exponents  and  this  depends  only  on  symmetry
properties  of  the  microscopic  energy  function  (or
Hamiltonian). When this is found to be the case, the two
systems are said to be in the same universality class.

Accordingly,  in  my  view  it  would  be  worth  reviewing  the
different investigations in order to find out if one could
organise results for the inertial-range exponent into some
kind of universality classes, although allowance should be
made for experimental error, which tends to be much greater in
fluid dynamics than in microscopic physics. I would be tempted
to take a look through my files, but unfortunately I remain
cut off from my university office by the pandemic.

Further  details  about  critical  phenomena  may  be  found  in
reference [1] below.

[1]  W.  D.  McComb.  Renormalization  Methods:  A  Guide  for
Beginners. Oxford University Press, 2004.



Macroscopic  symmetry  and
microscopic universality.
Macroscopic symmetry and microscopic universality.
The  concepts  of  macroscopic  and  microscopic  are  often
borrowed, in an unacknowledged way, from physics, in order to
think about the fundamentals of turbulence. By that, I mean
that there is usually no explicit acknowledgement, nor indeed
apparent realization, that the ratio of large scales to small
scales  is  many  orders  of  magnitude  smaller  in  turbulence
(which is at all scales actually a macroscopic phenomenon)
than it is in microscopic physics.

This idea began with Kolmogorov in 1941, when he employed
Richardson’s concept of a cascade of energy from large eddies
to small; to argue that, after a sufficiently large number of
steps,  there  could  be  a  range  of  eddy  sizes  which  were
statistically independent of their large-scale progenitors. In
passing, it should be noted that the concept of ‘eddy’ can be
left rather intuitive, and we could talk equally vaguely about
‘scales’. However, combining the cascade idea with Taylor’s
earlier  introduction  of  Fourier  modes  as  the  degrees  of
freedom  of  a  turbulent  system,  leads  to  a  much  more
satisfactory analogy with statistical physics, with the onset
of  scale  invariance  strengthening  the  analogy  to  the
microscopic theory of critical phenomena. As is well known,
that leads to the `$5/3$’ spectrum, which was expected to be
universal.

My own view is that it would be good to get it settled that
the Kolmogorov spectrum holds for isotropic turbulence. There
is still an absence of consensus about that. But the broader
claim of universality has been supported by measurements of
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spectra in a vast variety of flow configurations; although,
inevitably  there  have  been  instances  where  it  is  not
supported. So we end up with yet another unresolved issue in
turbulence. Is small-scale turbulence universal or not?

In order to consider whether or not the concept of symmetry
could assist with this, it may be helpful to think in terms of
definite examples. First, let us consider laminar flow in the
$x_1$  direction  between  fixed  parallel  plates  situated  at
$x_2=\pm a$. The velocity distribution between the plates will
be a symmetric function of the variable $x_2$. If now we
consider a flow where one plate is moving with respect to the
other, and this is the only cause of fluid motion, then we
have plane Couette flow and, as is well known, the velocity
profile  will  now  be  an  antisymmetric  function  of  $x_2$.
However,  the  molecular  viscosity  of  the  fluid  will  be
unaffected by the different macroscopic symmetries and will be
the same in both cases.

If we now extend this discussion to the case of turbulent mean
velocities and inquire about the behaviour of the effective
turbulent  viscosity  ($\nu_t$,  say:  for  a  definition  see
Section 1.5 of reference [1]), it is clear that this will be
very different in the two cases, and arguably that should
apply to the cascade process as well.

In isotropic turbulence, the cascade is described by the Lin
equation, with the key quantity being the transfer spectrum
$T(k)$. Its extension to an inhomogeneous case will bring in a
number of transfer spectra, such as $T_{11}$, $T_{12}$ and so
on.  In  order  to  cope  with  the  dependence  on  spatial
coordinates,  the  introduction  of  centroid  and  relative
coordinates  that  we  used  in  the  previous  post  will  prove
useful.  Recall  that  we  considered  a  covariance  function
$C(\mathbf{x},\mathbf{x’})$,  leaving  the  time  variables  out
for  simplicity  and  introduced  the  change  of  variables  to
centroid  and  relative  coordinates,  thus:  \[\mathbf{R}  =
(\mathbf{x}  +  \mathbf{x’})/2  \qquad  \mbox{and}  \qquad



\mathbf{r} = (\mathbf{x} – \mathbf{x’}). \] In this case one
component  of  the  spectral  tensor  could  be  written  as:
$T_{11}(\mathbf{k}, R_2)$, where we have Fourier transformed
with respect to the relative coordinate only. Then, at least
in the core region of the flow, we could expand out the
dependence on the centroid coordinate in Taylor series. In
this way we could separate the wavenumber cascade from spatial
effects, such as production and spatial energy transfer.

Ideally one could even use a closure theory: the covariance
equation of the DIA has been validated by the LET theory [2]
and, although some work has been done on this in the past, a
really serious approach would require a lot of bright young
people to get involved. Unfortunately, vast numbers of bright
young people all over the world are involved in complicated
pedagogical exercises in cosmology, particle theory, string
theory, quantum gravity and so on, most of which has gone
beyond any proper theoretical foundation. Ah well, important
but less glamorous problems like turbulence must await their
turn.

For completeness, I should emphasise that all flows discussed
above are assumed to be incompressible and well-developed.

[1] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[2] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor. 50:375501, 2017.
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with turbulence modelling?
Can statistical theory help with turbulence modelling?
When reading the book by Sagaut and Cambon some years ago, I
was  struck  by  their  balance  between  fundamentals  and
applications [1]. This started me thinking, and it appeared to
me that I had become ever more concentrated on fundamentals in
recent years. In other words, I seemed to epitomize the old
saying about scholarship consisting of `learning more and more
about less and less’!

It was not always so. I began my career in research and
development,  which  was  very  practical  indeed.  Then  my
employers sent me back to university where I took a degree in
theoretical physics, followed by a PhD on the statistical
theory of turbulence. Obviously the rot had set in; but, even
so, in later years I did quite a lot of experimental work on
drag reduction by additives and also turbulent diffusion. At
least these topics had a practical orientation. Moreover, I
have  also  used  the  $k-\varepsilon$  model  to  carry  out
calculations on the `jet in crossflow’ problem. This might
seem surprising, but it arose quite naturally in the following
way.

Around about 1980 I had a call from a colleague in the maths
department at Edinburgh. The Iran-Iraq war had recently broken
out, and one of his MPhil students came from that part of the
world. The student had decided that he would rather take a PhD
than  go  home  and  be  involved  in  the  fighting.  Very
understandable, but the difficulty was that he needed a more
substantial project. At present he was studying the jet in
crossflow  problem,  using  ideal  flow  methods.  My  colleague
wondered if I could join in as co-supervisor and introduce
some  turbulence  to  the  project  in  order  to  make  it  more
realistic.

Lacking any experience in this field, I happily agreed to join
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in, and proposed that we use the $k-\varepsilon$ model, which
at the time was the best known of the engineering models. We
set  out  on  a  programme  of  studying  both  the  model  and
associated numerical methods, in the process considering a
hierarchy  of  problems  of  increasing  difficulty,  until  we
reached the jet in crossflow.

This was a long time ago, but two things about this PhD
supervision remain in my memory. First, the student was a
mathematician  and  had  no  prior  knowledge  of  numerical
computation. This leaves me with an abiding impression that he
initially found it very difficult to realise that we did not
need to be able to solve an equation in the mathematical
sense. Because of this, we had many discussions which appeared
to be going well and then ended in frustration. Secondly, once
we managed to encourage him to overcome his reluctance and try
to use the computer, he proved to be a natural and worked
rapidly through our hierarchy of problems, ending up with
useful results in a commendably short time. This happened at a
time of upheaval for me, when I was moving from the School of
Engineering to the School of Physics, so I have only a rather
vague memory of how things turned out. I believe that he got
his PhD and then went on somewhere in England as a postdoc.
Whether the results were published or not, I don’t recall. But
the experience left me with an appreciation of the value of a
practical engineering model, where my own fundamental work
would have been of little assistance. A short discussion of
the $k-\varepsilon$ model can be found in Section 3.3.4 of my
book, given as reference [2] below.

When considering how statistical theory might help, we should
first recognize that it does give rise to a class of models,
beginning with the Eddy Damped Quasi-Normal model (which is
cognate to the self-consistent field theory of Edwards) and
has a single adjustable constant. It is, however, restricted
to homogeneous turbulence. What we could really do with is
something  like  $k-\varepsilon$,  which  is  a  single-point



theory, but which arises in a systematic way from a two-point
statistical theory. The value of the latter is that it takes
into account spatially (and temporally) nonlocal effects.

The  details  of  the  statistical  closure  theories  are
complicated, but the basic idea of how one might try to derive
single-point  engineering  models  is  quite  simple.  The  key
quantity is the covariance of two fluctuating velocities at
different points (and times) and a theory consists of a closed
set of equations to determine the covariance. In general, the
covariance tensor is a matrix of nine covariance functions,
although symmetry will often reduce that. We will consider
just  one  such  function,  which  we  write  as
$C(\mathbf{x},\mathbf{x’})$,  leaving  the  time  variables  out
for  simplicity.  We  then  make  the  change  of  variables  to
centroid  and  relative  coordinates,  thus:  \[\mathbf{R}  =
(\mathbf{x}  +  \mathbf{x’})/2  \qquad  \mbox{and}  \qquad
\mathbf{r}  =  (\mathbf{x}  –  \mathbf{x’}).  \]

Now, the statistical theories are studied for the homogeneous
case in order to simplify the problem. That is, we assume that
there is no dependence on the centroid coordinate; and Fourier
transform into wavenumber space, with respect to the relative
variable. However, the basic derivation and renormalization
are  not  restricted  to  this  case,  and  we  can  write  down
equations for the general case. Then, recognizing that most
turbulent shear flows have a smooth dependence on the centroid
coordinate,  we  can  envisage  expanding  in  the  centroid
coordinate,  with  coefficients  obtained  as  integrals  over
wavenumber. Then, setting $x=x’$, we could end up with single-
point  equations,  where  coefficients  are  determined  by
integrals  that  arise  in  the  fundamental  theory.

This  would  not  be  a  trivial  process  but,  given  the  huge
importance  of  turbulence  calculations  in  a  variety  of
applications, it is perhaps surprising that it has been so
comprehensively neglected. A recent discussion of statistical
two-point  closures  can  be  found  in  reference  [3].  For



completeness, I should mention that a second edition of [1]
has appeared and I understand that a third edition is in the
pipeline.

[1] P. Sagaut and C. Cambon. Homogeneous Turbulence Dynamics.
Cambridge University Press, Cambridge, 2008.
[2] W. D. McComb. The Physics of Fluid Turbulence. Oxford
University Press, 1990.
[3] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.


