
Macroscopic  symmetry  and
microscopic universality.
Macroscopic symmetry and microscopic universality.
The  concepts  of  macroscopic  and  microscopic  are  often
borrowed, in an unacknowledged way, from physics, in order to
think about the fundamentals of turbulence. By that, I mean
that there is usually no explicit acknowledgement, nor indeed
apparent realization, that the ratio of large scales to small
scales  is  many  orders  of  magnitude  smaller  in  turbulence
(which is at all scales actually a macroscopic phenomenon)
than it is in microscopic physics.

This idea began with Kolmogorov in 1941, when he employed
Richardson’s concept of a cascade of energy from large eddies
to small; to argue that, after a sufficiently large number of
steps,  there  could  be  a  range  of  eddy  sizes  which  were
statistically independent of their large-scale progenitors. In
passing, it should be noted that the concept of ‘eddy’ can be
left rather intuitive, and we could talk equally vaguely about
‘scales’. However, combining the cascade idea with Taylor’s
earlier  introduction  of  Fourier  modes  as  the  degrees  of
freedom  of  a  turbulent  system,  leads  to  a  much  more
satisfactory analogy with statistical physics, with the onset
of  scale  invariance  strengthening  the  analogy  to  the
microscopic theory of critical phenomena. As is well known,
that leads to the `$5/3$’ spectrum, which was expected to be
universal.

My own view is that it would be good to get it settled that
the Kolmogorov spectrum holds for isotropic turbulence. There
is still an absence of consensus about that. But the broader
claim of universality has been supported by measurements of
spectra in a vast variety of flow configurations; although,
inevitably  there  have  been  instances  where  it  is  not
supported. So we end up with yet another unresolved issue in
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turbulence. Is small-scale turbulence universal or not?

In order to consider whether or not the concept of symmetry
could assist with this, it may be helpful to think in terms of
definite examples. First, let us consider laminar flow in the
$x_1$  direction  between  fixed  parallel  plates  situated  at
$x_2=\pm a$. The velocity distribution between the plates will
be a symmetric function of the variable $x_2$. If now we
consider a flow where one plate is moving with respect to the
other, and this is the only cause of fluid motion, then we
have plane Couette flow and, as is well known, the velocity
profile  will  now  be  an  antisymmetric  function  of  $x_2$.
However,  the  molecular  viscosity  of  the  fluid  will  be
unaffected by the different macroscopic symmetries and will be
the same in both cases.

If we now extend this discussion to the case of turbulent mean
velocities and inquire about the behaviour of the effective
turbulent  viscosity  ($\nu_t$,  say:  for  a  definition  see
Section 1.5 of reference [1]), it is clear that this will be
very different in the two cases, and arguably that should
apply to the cascade process as well.

In isotropic turbulence, the cascade is described by the Lin
equation, with the key quantity being the transfer spectrum
$T(k)$. Its extension to an inhomogeneous case will bring in a
number of transfer spectra, such as $T_{11}$, $T_{12}$ and so
on.  In  order  to  cope  with  the  dependence  on  spatial
coordinates,  the  introduction  of  centroid  and  relative
coordinates  that  we  used  in  the  previous  post  will  prove
useful.  Recall  that  we  considered  a  covariance  function
$C(\mathbf{x},\mathbf{x’})$,  leaving  the  time  variables  out
for  simplicity  and  introduced  the  change  of  variables  to
centroid  and  relative  coordinates,  thus:  \[\mathbf{R}  =
(\mathbf{x}  +  \mathbf{x’})/2  \qquad  \mbox{and}  \qquad
\mathbf{r} = (\mathbf{x} – \mathbf{x’}). \] In this case one
component  of  the  spectral  tensor  could  be  written  as:
$T_{11}(\mathbf{k}, R_2)$, where we have Fourier transformed



with respect to the relative coordinate only. Then, at least
in the core region of the flow, we could expand out the
dependence on the centroid coordinate in Taylor series. In
this way we could separate the wavenumber cascade from spatial
effects, such as production and spatial energy transfer.

Ideally one could even use a closure theory: the covariance
equation of the DIA has been validated by the LET theory [2]
and, although some work has been done on this in the past, a
really serious approach would require a lot of bright young
people to get involved. Unfortunately, vast numbers of bright
young people all over the world are involved in complicated
pedagogical exercises in cosmology, particle theory, string
theory, quantum gravity and so on, most of which has gone
beyond any proper theoretical foundation. Ah well, important
but less glamorous problems like turbulence must await their
turn.

For completeness, I should emphasise that all flows discussed
above are assumed to be incompressible and well-developed.
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