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When reading the book by Sagaut and Cambon some years ago, I
was  struck  by  their  balance  between  fundamentals  and
applications [1]. This started me thinking, and it appeared to
me that I had become ever more concentrated on fundamentals in
recent years. In other words, I seemed to epitomize the old
saying about scholarship consisting of `learning more and more
about less and less’!

It was not always so. I began my career in research and
development,  which  was  very  practical  indeed.  Then  my
employers sent me back to university where I took a degree in
theoretical physics, followed by a PhD on the statistical
theory of turbulence. Obviously the rot had set in; but, even
so, in later years I did quite a lot of experimental work on
drag reduction by additives and also turbulent diffusion. At
least these topics had a practical orientation. Moreover, I
have  also  used  the  $k-\varepsilon$  model  to  carry  out
calculations on the `jet in crossflow’ problem. This might
seem surprising, but it arose quite naturally in the following
way.

Around about 1980 I had a call from a colleague in the maths
department at Edinburgh. The Iran-Iraq war had recently broken
out, and one of his MPhil students came from that part of the
world. The student had decided that he would rather take a PhD
than  go  home  and  be  involved  in  the  fighting.  Very
understandable, but the difficulty was that he needed a more
substantial project. At present he was studying the jet in
crossflow  problem,  using  ideal  flow  methods.  My  colleague
wondered if I could join in as co-supervisor and introduce
some  turbulence  to  the  project  in  order  to  make  it  more
realistic.
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Lacking any experience in this field, I happily agreed to join
in, and proposed that we use the $k-\varepsilon$ model, which
at the time was the best known of the engineering models. We
set  out  on  a  programme  of  studying  both  the  model  and
associated numerical methods, in the process considering a
hierarchy  of  problems  of  increasing  difficulty,  until  we
reached the jet in crossflow.

This was a long time ago, but two things about this PhD
supervision remain in my memory. First, the student was a
mathematician  and  had  no  prior  knowledge  of  numerical
computation. This leaves me with an abiding impression that he
initially found it very difficult to realise that we did not
need to be able to solve an equation in the mathematical
sense. Because of this, we had many discussions which appeared
to be going well and then ended in frustration. Secondly, once
we managed to encourage him to overcome his reluctance and try
to use the computer, he proved to be a natural and worked
rapidly through our hierarchy of problems, ending up with
useful results in a commendably short time. This happened at a
time of upheaval for me, when I was moving from the School of
Engineering to the School of Physics, so I have only a rather
vague memory of how things turned out. I believe that he got
his PhD and then went on somewhere in England as a postdoc.
Whether the results were published or not, I don’t recall. But
the experience left me with an appreciation of the value of a
practical engineering model, where my own fundamental work
would have been of little assistance. A short discussion of
the $k-\varepsilon$ model can be found in Section 3.3.4 of my
book, given as reference [2] below.

When considering how statistical theory might help, we should
first recognize that it does give rise to a class of models,
beginning with the Eddy Damped Quasi-Normal model (which is
cognate to the self-consistent field theory of Edwards) and
has a single adjustable constant. It is, however, restricted
to homogeneous turbulence. What we could really do with is



something  like  $k-\varepsilon$,  which  is  a  single-point
theory, but which arises in a systematic way from a two-point
statistical theory. The value of the latter is that it takes
into account spatially (and temporally) nonlocal effects.

The  details  of  the  statistical  closure  theories  are
complicated, but the basic idea of how one might try to derive
single-point  engineering  models  is  quite  simple.  The  key
quantity is the covariance of two fluctuating velocities at
different points (and times) and a theory consists of a closed
set of equations to determine the covariance. In general, the
covariance tensor is a matrix of nine covariance functions,
although symmetry will often reduce that. We will consider
just  one  such  function,  which  we  write  as
$C(\mathbf{x},\mathbf{x’})$,  leaving  the  time  variables  out
for  simplicity.  We  then  make  the  change  of  variables  to
centroid  and  relative  coordinates,  thus:  \[\mathbf{R}  =
(\mathbf{x}  +  \mathbf{x’})/2  \qquad  \mbox{and}  \qquad
\mathbf{r}  =  (\mathbf{x}  –  \mathbf{x’}).  \]

Now, the statistical theories are studied for the homogeneous
case in order to simplify the problem. That is, we assume that
there is no dependence on the centroid coordinate; and Fourier
transform into wavenumber space, with respect to the relative
variable. However, the basic derivation and renormalization
are  not  restricted  to  this  case,  and  we  can  write  down
equations for the general case. Then, recognizing that most
turbulent shear flows have a smooth dependence on the centroid
coordinate,  we  can  envisage  expanding  in  the  centroid
coordinate,  with  coefficients  obtained  as  integrals  over
wavenumber. Then, setting $x=x’$, we could end up with single-
point  equations,  where  coefficients  are  determined  by
integrals  that  arise  in  the  fundamental  theory.

This  would  not  be  a  trivial  process  but,  given  the  huge
importance  of  turbulence  calculations  in  a  variety  of
applications, it is perhaps surprising that it has been so
comprehensively neglected. A recent discussion of statistical



two-point  closures  can  be  found  in  reference  [3].  For
completeness, I should mention that a second edition of [1]
has appeared and I understand that a third edition is in the
pipeline.
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