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How big is infinity?
In  physics  it  is  usual  to  derive  theories  of  macroscopic
systems  by  taking  an  infinite  limit.  This  could  be  the
continuum limit or the thermodynamic limit. Or, in the theory
of critical phenomena, the signal of a nontrivial fixed point
is that the correlation length becomes infinite. Of course,
what we mean by `infinity’ is actually just a very large
number. But the mathematicians do not like this. In reference
[1]  below,  the  author  states:  ‘…  statistical-mechanical
theories of phase transitions tell us that phase transitions
only occur in infinite systems’. She sees this as paradoxical
because, as we all know, in everyday life we are surrounded by
finite  systems  undergoing  phase  transitions.  She  further
believes that the paradox can be resolved by working with
constructive mathematics, rather than classical mathematics,
which is what we all normally use.

My quotation from [1] is certainly open to deconstruction, and
I  doubt  if  many  physicists  would  agree  with  it.  What
originally drew my attention to this particular problem is the
situation in turbulence theory. As the Reynolds number is
increased (or, the viscosity is decreased), the dissipation
rate  becomes  independent  of  the  viscosity.  Physicists
attribute this to the energy transfer by the nonlinear term in
the  equation  of  motion  becoming  scale-invariant.  As  the
Reynolds number is increased even more, this scale-invariance
extends  further  through  wavenumber  space,  and  nothing
thereafter  changes,  either  qualitatively  or  quantitatively.
This in practical terms is the infinite Reynolds number limit,
and it occurs at quite modest, finite values of the Reynolds
number.

However,  many  mathematicians,  harking  back  to  a  paper  by
Onsager [2] in 1949, believe that the infinite Reynolds number
limit corresponds to zero viscosity; and, even more bizarrely,
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that the continuum properties of the fluid break down in this
limit. Accordingly, they are driven to finding ways of making
the  Fourier  representation  of  the  inviscid  Euler  equation
dissipative,  by  destroying  its  symmetry-based  conservation
properties. I have discussed this topic in three previous
posts on 12, 19 and 26 November; and a paper, at that time in
preparation, is now available on the arXiv as [3].
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