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I recently saw the paper cited as [1] below, which for me is I
think the first of the 2021 papers. As the title suggests, it
presents  a  review  of  methods  of  measuring  the  turbulent
dissipation  rate.  It  contains  a  certain  amount  of  basic
theory, along the lines of expressions for the dissipation
rate, the Taylor dissipation surrogate, remarks about the role
of inertial transfer, dynamical equilibrium, and so on. But
there  is  no  attempt  at  a  statistical  theory  and  most
theoretical  attempts  at  explaining  the  dependence  of  the
dissipation rate $\varepsilon$ on the Taylor-Reynolds number
do not get a mention.

Nevertheless, the authors do cite a paper by my co-authors and
me, which presents an analytical theory of the dependence of
the  normalized  dissipation  $C_{\varepsilon}$,  which  is  the
dissipation rate divided by $U^3/L$, where $U$ is the root
mean square velocity and $L$ is the integral lengthscale [2].
They  say  that  we  `explained  that  the  decay  of  the
dimensionless dissipation with increasing Reynolds number was
because of the increase in the Taylor surrogate’. This is true
for forced, stationary turbulence, because we can keep the
rate of forcing (and hence the dissipation) constant while
decreasing the viscosity in order to increase the Reynolds
number.

However,  this  paper  says  so  much  more!  It  presents  an
analytical theory, based on the Karman-Howarth equation, in
which  dimensionless  structure  functions  are  expanded  in
inverse  powers  of  the  Reynolds  number.  The  resulting
expression  is  given  by:  \begin{equation}C_{\varepsilon}=
C_{\varepsilon,\infty}+C/R_L  +  O(1/R^2_L),  \end{equation}
where $R_L$ is the integral scale Reynolds number. Direct
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numerical simulation was used to obtain the coefficients as
$C=18.9  \pm  0.009$  and  $C_{\varepsilon,\infty}=
0.468\pm0.006$.  The  result  compared  to  other  numerical
investigations is shown in the figure below, which is taken
from Fig. 1 of [2], and where equation (44) of that reference
is the equation just given here.

 

 

It is worth emphasising that this result is asymptotically
exact in the limit of large Reynolds numbers. For low Reynolds



numbers, our DNS confirmed that the $1/R_L$ dependence was
correct to within experimental error. When this theory was
later applied to magnetohydrodynamic turbulence, it was found
necessary to include a term at order $1/R^2_L$ at low Reynolds
numbers [3]. In fact, a detailed argument was previously put
forward by us to the effect that the $1/R_L$ dependence was
exact for isotropic turbulence: see the supplemental material
to the paper cited as [4] below.

I should also emphasise that none of this is intended as a
criticism of Wang et al, which is a perfectly competent piece
of  work  of  its  general  type.  It  is  really  a  matter  of
emphasising the gulf between fluid dynamics and physics. For
instance,  it  would  be  very  unlikely  that  an  experimental
particle physicist would fail to see the point of a paper by a
theoretical particle physicist, even if they were unable to
follow the detailed derivations in it. This is because in
physics we all have the same education up to a certain level,
and even thereafter there is overlap and much in common. But
fluid dynamics is much less homogeneous than physics and this
leads  to  misunderstandings  based  very  largely  on  cultural
gaps. Those of us who belong to the very small number of
physicists working on turbulence have much cause to be aware
of this. I have posted about this before and I will do so soon
again!
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