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In the preceding two posts, we have pointed out that the final
statement by Onsager in his 1949 paper [1] is, in the absence
of a proper limiting procedure, only a conjecture; and that
the infinite Reynolds number limit, as introduced by Batchelor
[2] and extended by Edwards [3], shows that it is incorrect.
We have also shown that it is not in accord with the way in
which turbulence is nowadays known to behave. In this post, we
consider  the  question  of  how  well  the  Batchelor-Edwards
picture of dissipation agrees with the experimental picture
and consider the nature of the equations of fluid motion.
Additionally, we consider the physical nature of the process
that we term ‘dissipation’.

A particular problem with Onsager’s paper is that it conflates
two  quite  distinct  situations.  These  are:  the  infinite
Reynolds number limit, on the one hand; and the breakdown of
the continuum limit, on the other. In order to distinguish
between these two, we have to distinguish between the two
kinds of Navier-Stokes equation (NSE). If we wish to take a
true  (in  the  mathematical  sense)  infinite  Reynold  number
limit,  then  we  must  work  with  the  equations  of  continuum
mechanics.  If  we  want  to  consider  the  breakdown  of  the
continuum  limit,  then  we  must  consider  a  fluid  made  of
molecules, in which the equations of motion were derived by a
macroscopic  averaging  process.  I  have  touched  on  this
distinction in my post of 14 May 2020 and will develop it in
rather more detail here.
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The  equations  of  fluid  motion,  as  they  are  normally
encountered  by  engineers  and  applied  mathematicians,  are
derived macroscopically; and rely on the concept of a fluid
continuum which is without structure. They express Newton’s
second law of motion as applied to the continuum and are based
on a linear approximation to the relation between the shear
stresses and corresponding rates of strain. Fortuitously, this
approximation applies to a wide class of fluids. They are also
based on the assumption of incompressibility which means that
the macroscopic fluid motions do not produce density changes.
Of  course,  sound  waves  will  travel  through  any  fluid,  so
strictly the incompressibility is only an approximation.

The NSE is expected to describe the macroscopic motion of any
Newtonian fluid. If we set the viscosity equal to zero, then
we have the Euler equation, which is taken to apply to an
ideal fluid. It then provides a relationship between velocity
and  pressure  for  fluid  motions  which  are  remote  from
boundaries. Combined with the concept of streamline flow, it
leads  to  the  Bernoulli  equation.  This  can  be  solved  for
practical problems by the use of ad hoc coefficients which
take effects such as viscosity into account. Also, the Euler
equation  can  be  combined  with  boundary  layer  theory  to
describe real fluid motions.

If we consider the Batchelor-Edwards infinite Reynolds number
limit [2,3], which locates the dissipation at $k=\infty$, then
this can only apply in the continuum mechanics picture just
outlined. What, then, is the use of such a limit? The answer
is that it is useful in any context where one’s theory is
based on the continuum model. In the case of Edwards, he
applied it to his self-consistent field theory of turbulence.
Of course, as we pointed out in the preceding post, this is
mathematically  equivalent  to  Kraichnan’s  use  of  scale-
invariance in testing his direct-interaction approximation.

Now let us turn to the microscopic derivation of the NSE. This
begins at the molecular level and one ends up by averaging



over volumes which are small compared to the flow volume but
large  enough  to  contain  very  large  numbers  of  molecules.
Evaluating such averages is seen as a limiting process and is
often referred to as the continuum limit.

It is worth quoting what Batchelor said (ibid page 5) after
discussing the possibility that small scale motions might not
satisfy the continuum limit, he went on: ‘However, the action
of  viscosity  is  to  suppress  strongly  the  small-scale
components  of  turbulence  and  we  shall  see  that  for  all
practical conditions the spectral distribution of energy dies
away effectively to zero long before length scales comparable
with the mean free path are reached. As a consequence, we can
ignore the molecular structure of the medium and regard it as
a continuous fluid.’

In my post on 14 May 2020, I quoted a calculation by Leslie
[4], making exactly the same point, but in a more quantitative
way. As an aside, I note that over the years I have heard many
speculations about singularities and near-singularities (sic),
but I have never heard of anyone making such speculations
actually doing a calculation to establish under just what
circumstances this pathological behaviour might be expected to
occur.  As  we  have  seen,  and  will  discuss  further  in  our
forthcoming paper [5], the practical onset of scale-invariance
is at quite a moderate Reynolds number.

We  will  conclude  by  considering  what  we  mean  by  ‘viscous
dissipation’. This is the rate at which the kinetic energy of
fluid motion is randomised at the molecular level, with the
result that the fluid heats up. Turbulent dissipation is of
course known to be very much larger, but the turbulent motions
are themselves dissipated by molecular motion and again the
fluid heats up. This is a two-stage process, with energy being
transferred through wavenumber until it is finally dissipated
by viscosity. As the Reynolds number increases, the volume of
wavenumber space also increases, such that a greater amount of
energy  can  be  accommodated,  and  this  leads  to  scale-



invariance, and to apparent independence of the coefficient of
viscosity. This absorption of energy may be seen as a quasi-
dissipation but the real dissipation still happens at the end
of the cascade! It would be really quite strange if this
limiting  process  led  to  a  situation  where  there  was  only
quasi-dissipation and the fluid no longer heated up. In other
words, if the Onsager view were to prevail over the Batchelor-
Edwards view.
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