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In the preceding post, we argued that the final statement by
Onsager in his 1949 paper [1] is, in the absence of a proper
limiting procedure, only a conjecture; and that the infinite
Reynolds number limit, as introduced by Batchelor [2] and
extended by Edwards [3], shows that it is incorrect. It is
indeed possible to formulate the limiting case such that the
detailed symmetry, which guarantees energy conservation by the
nonlinear term, is preserved globally. At this point we should
note that such extreme limits can only be taken in the context
of continuum mechanics, but not for a real physical fluid,
where  the  equation  of  motion  is  derived  from  statistical
mechanics. There is also the question: how does the turbulence
actually behave in the limit of infinite Reynolds numbers?

We may address these two points together by introducing the
flux $\Pi(\kappa)$ of energy through the mode with wavenumber
$\kappa$,  thus:  \begin{equation}\Pi(\kappa)  =
\int_\kappa^\infty \,dk\, T(k) = – \int_0^\kappa\, dk \, T(k),
\end{equation} where $T(k)$ is the energy transfer spectrum,
as  it  appears  in  the  Lin  equation,  and  we  have  assumed
stationarity for sake of simplicity.

As is well known, the effect of increasing the Reynolds number
is to increase the flux until it reaches a maximum value equal
to the rate of dissipation $\varepsilon$. We may write this
as:  \begin{equation}\Pi_{\mbox{max}}  \equiv  \varepsilon_T  =
\varepsilon.\end{equation}  Thereafter,  as  we  increase  the
Reynolds number, the flux cannot increase any further, but the
dissipation  wavenumber  keeps  increasing,  and  the  above
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relationship applies over an increasing range of wavenumbers.
This is known as scale-invariance and in effect defines the
inertial  range.  We  now  write  the  Edwards  result  for  the
infinite  Reynolds  number  limit  as:  \[T(k)  =  \varepsilon_W
\delta (k) -\varepsilon \delta (k-\infty) \equiv \varepsilon
\delta  (k)  -\varepsilon  \delta  (k-\infty),  \]  where
$\varepsilon_W  $  is  the  rate  of  doing  work  by  arbitrary
stirring  forces.  Then,  trivially,  substituting  this  into
equation (1) shows that it is mathematically equivalent to
scale-invariance.

For many years, it has been widely accepted among theorists
that the onset of scale-invariance is in effect the onset of
infinite Reynolds number behaviour. Both numerical simulations
and computations of statistical closures alike have shown the
asymptotic  behaviour  \[\lim_{R\rightarrow
\infty}\frac{\varepsilon_T}{\varepsilon} \rightarrow 1,\] from
below. Here we show the reciprocal of this behaviour (because
we were studying the dissipation at the time) where we plot
the  ratio  of  dissipation  to  maximum  flux  against  Taylor-
Reynolds number.



Ratio of dissipation to peak inertial transfer rate as
a function of Taylor-Reynolds number.

This figure is taken from the thesis [4] and will appear in a
paper now in preparation [5]. Clearly the ratio of dissipation
to maximum flux $\varepsilon_T$ approaches unity from above,
as  the  Reynolds  number  increases.  Evidently  from  about
$R_\lambda \sim 100$, scale-invariance is well established. In
the  next  post,  we  shall  discuss  the  nature  of  viscous
dissipation  and  distinguish  it  from  quasi-dissipation.
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