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The Gaussian, or normal, distribution plays a key part in
statistical field theory. This is partly because it is the
only functional which can be integrated and partly because
Gaussian  distributions  are  frequently  encountered  in
microscopic  physics  at,  or  near,  thermal  equilibrium.  The
latter is not the case in turbulence. Indeed the non-Gaussian
nature  of  the  turbulence  probability  functional  (pdf)  is
inescapable. In the absence of a mean flow, the statistical
closure problem amounts to how one expresses the third-order
moment $\langle uuu \rangle$ in terms of the second-order
moment $\langle uu \rangle$. It is a matter of symmetry (so
that it can be determined by inspection) that the third-order
moment vanishes when evaluated against a Gaussian pdf. Of
course various turbulence pdfs are seen to be quite close to
Gaussian in form. This is particularly so for the distribution
of the velocity at a single point. But some deviation from
normality for a turbulence pdf is of the essence.

We will not discuss the properties of Gaussian forms here: a
pedagogic treatment can be found in Appendix B of my recent
book, which is cited below as reference [1]. Our aim is to
give a brief discussion of three ways in which Gaussians are
used in turbulence, one in Direct Numerical Simulation (DNS)
and two in statistical theory. From these considerations we
should be able to make a number of general points without
going through a lot of complicated theory. The one theoretical
aspect we should keep in mind, is the form of the solenoidal
Navier-Stokes equation in wavenumber space, which we can write
in a very symbolic form as: \[\left( \frac{\partial}{\partial
t} + \nu k^2\right) u_k = M_k u_ju_j + f_k .\] Here $k$ and
$j$ are combined wavenumbers and tensor indices, $\nu$ is the
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kinematic viscosity, $M_k$ is the inertial transfer operator,
$u_k$ is the Fourier transform of the velocity field, and
$f_k$ is a stirring force, if required. A full discussion of
this equation can be found in reference [1]. As ever, repeated
indices are summed.

The two standard problems in DNS are (a) free decay; and (b)
forced, stationary turbulence. In both cases, we start with an
arbitrary (non-turbulent) velocity field, which is random and
has a multivariate normal (i.e. Gaussian) distribution. The
arbitrary initial energy spectrum $E(k,0)$ is chosen to be
confined  to  very  low  wavenumbers.  As  time  goes  on,  the
nonlinear coupling in the NSE generates a velocity field at
ever higher wavenumbers. In spectral terms, this is seen as
$E(k,t)$ spreads out to higher wavenumbers and the skewness $-
S$ rises from $S=0$ (corresponding to a Gaussian pdf) to $-
S\sim 0.5$, corresponding to developed turbulence. A brief
introduction to DNS may be found in Section 3.2 of reference
[2].

The theoretical approach began with quasi-normality in the
1950s, in which one assumes that the fourth-order moment can
be factorised as if Gaussian, in order to solve the second
equation  of  the  statistical  hierarchy  for  the  third-order
moment. This, as is well known, led to a catastrophe. The
first real advance was due to Kraichnan [3] and followed by
Wyld [4], in what is now known as renormalized perturbation
theory. In some ways, this is rather like the DNS, in that we
start with a random Gaussian velocity field with a prescribed
spectrum which is confined to low wavenumbers. Then, instead
of  stepping  this  forward  in  time  on  the  computer,  we
substitute it into the non-linear term of the NSE. Assigning a
book-keeping parameter $\lambda$ (where $\lambda = 1$) to the
nonlinear term, we expand out in powers of $\lambda$, with
coefficients in the series being calculated iteratively. This
is not strictly speaking perturbation theory, as $\lambda$ is
not small, but it resembles it, hence the name. Of course we



cannot truncate at low order in $\lambda$, so we must sum
infinite series, or rearrange into sub-series which can be
summed. This approach leads to remarkably successful results,
although there are still some questions to be answered.

The last approach was due to Edwards [5] and is the method of
the self-consistent field. In this theory, Edwards used the
NSE to derive a Liouville equation for the turbulence pdf. The
Gaussian pdf in this work is quite different from the other
two. It is chosen to give the correct value of the two-
velocity moment. Its role then is as a basis function for an
iterative solution of the Liouville equation as an operator-
product expansion about the Gaussian zero-order distribution.
Symmetry arguments play an important part in this work and if
you wish to pursue this point, you will find a discussion (and
an extension to two-time forms) in reference [6]. It is worth
noting two points. First, this is an expansion for the exact
pdf about a Gaussian and, as I remarked earlier, turbulence
pdfs can be quite close to Gaussian in form. Hence there is a
possibility of establishing a second-order truncation as a
rational  approximation.  Secondly,  the  statistical  closures
derived this way are cognate to Kraichnan’s closures which are
derived  by  very  different  methods.  These  points  should
encourage you to take a `glass full’ rather than a `glass
empty’ view of statistical turbulence theory!
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