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When I was preparing last week’s post, I consulted the Saffman
lectures in order to find an example of the culture clash
between theoretical physics and applied maths. In the process
I noticed quite a few points that I felt tempted to write
about and in particular that old perennial question: 1is
turbulence a single universal phenomenon? Or, does it depend
on the physical situation under consideration and its
conditions of formation? Over the years this question has been
put numerous times by various people, both in discussions and
in writing, but never seems to lead anywhere. Saffman pointed
out that the opposite extreme would be to consider each
situation of practical importance and describe it to the
required degree of detail. At the same time he conceded that
there was evidence for universality, but suggested that there
might be merit in some form of cataloguing and classifying of
flows.

Of course there has always been some degree of classification,
even just for pedagogic purposes. For instance, free shear
flows versus wall-bounded flows; but presumably Saffman was
thinking in terms of something more profound. So far as I
know, no such scheme exists; but, if it did, it might be
analogous to the idea of universality classes in the theory of
critical phenomena. Such phenomenon are characterised by the
way macroscopic observables, such as specific heat, magnetic
susceptibility or the correlation length, behave as a system
tends to the critical point. They either diverge (become
infinite) or go to zero. This behaviour is represented by a
power-law dependence on the reduced temperature, with the
introduction of critical exponents which are either positive
or negative, according to the observed behaviour at the
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critical point. If two different physical phenomena are found
to have the same values of their critical exponents, then they
are said to be in the same universality class. This is of
course, a purely phenomenological approach, but it corresponds
to an underlying symmetry in the Hamiltonian of the systenm,
along with the dimensionality of the space. An introductory
account of this topic can be found in the book cited as
reference [1] below.

There is no doubt that many of the pioneers of turbulence
theory, viz. Taylor, Kolmogorov, Batchelor and Townsend,
thought in terms of a correspondence between turbulence and
statistical mechanics. As we have pointed out elsewhere (see
Section 12.5 of reference [2]), Batchelor wrote about ‘an
ultimate statistical state of the turbulence’ that would
follow from a ‘whole class of different initial conditions’.
As we have also pointed out (ibid), one problem with this is
the very great difference in the number of degrees of freedom
$N$ between the two. In effect, for canonical statistical
mechanics, $N$ is so large that fluctuations can effectively
be neglected and the average and instantaneous probability
distribution functions are virtually identical. This 1is
certainly not the case for turbulence. So perhaps one can only
expect a somewhat limited correspondence between the two. This
is not an argument for giving up the analogy. Merely a plea
for realism in employing it.

The basic idea underpinning the statistical picture of
turbulence 1is that, as energy transfer proceeds from large
eddies to small, information is lost about the conditions of
their formation. Although many people prefer to think in terms
of real space and ‘eddies’, the idea of an energy cascade 1is
not well defined unless one works in wavenumber space, where
the Fourier modes are the degrees of freedom. So, strictly
speaking, one should express this in terms of transfer from
small wavenumber modes to those at large wavenumber, where
turbulent kinetic energy is converted into heat. This process



is in accordance with the Lin equation, whereas the Karman-
Howarth equation is entirely local and can tell us nothing
about it.

The scaling of spectra from a variety of flows on Kolmogorov
variables supports this picture and, even if there are results
that do not, this does not invalidate the correctness of
Kolmogorov scaling for certain flows. The valid (and
interesting) question then is: how do such flows differ from
those that do? A consideration of spatial symmetry may shed
some light on this.

Suppose, for a simple example, we consider turbulent shear
flow in the $x$-direction, between infinite parallel plates
situated at $y=\pm a$. The flows are homogeneous in the $z$%-
direction, while the mean velocity $U$ depends on $y$. If the
plates are at rest, then $U(y)$ is symmetric under the
interchange of $y$ and $-y$. However, if the plates are in
relative motion (Couette flow) then $U(y)$ is antisymmetric
under this interchange. The first case 1s an approximation to
flow in a plane duct (or even, with some adjustment, to pipe
flow) and it is well known that Kolmogorov scaling 1is
observed. What happens in the Couette case, I don’t know. But
it would be interesting to find out. The appropriate tool for
cataloguing flows in this way is to transform to centroid and
difference coordinates, and make an expansion in the centroid
coordinate in Taylor series. Well, it’s an idea!

Lastly, for the theoretical physicist the problem posed by the
Navier-Stokes equation in wavenumber space, and driven by
random noise, is a well-posed problem. It should be noted that
the pioneers in this area were careful to set it up such that
it could satisfy the Kolmogorov conditions for an inertial
range, and in doing this they were guided by the statistical
treatment of other dynamical problems, such as Brownian
motion. Nowadays it is seen as belonging to a wide class of
driven diffusion equations with particular relevance to soft
condensed matter. Recently we have even found the surprising



result that it can undergo a phase transition at low Reynolds
numbers [3], so there is much still to understand about this

stochastic dynamical system.
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