
Formulation  of
Renormalization  Group  (RG)
for turbulence: 2
Formulation of Renormalization Group (RG) for turbulence: 2
In last week’s post, we recognised that the basic step of
averaging  over  high-frequency  modes  was  impossible  in
principle  for  a  classical,  deterministic  problem  such  as
turbulence.  Curiously  enough,  for  many  years  it  has  been
recognized in the analogous subgrid modelling problem that a
conditional  average  is  required;  and  that  this  must  be
evaluated approximately. But even then it has not apparently
been realised that the formulation of the average must also be
approximate. As for theoretical physicists, they have long
forgotten that Wilson pointed out the need for a conditional
average in RG, and that it is evaded in their field by working
with Gaussian distributions, which render it trivial. So one
still sees the occasional pointless paper claiming to be a
theory of turbulence by people who are unaware of the work of
Forster et al as mentioned in my previous post.

During the second half of the 1980s, I was writing my first
book on turbulence and simultaneously trying to figure out
what was wrong with my iterative averaging form of RG. By the
end of that decade I had sent off my MS to the publishers and
could concentrate on the problems of RG. Early in 1990 I
realised that the average over the $u^+$ could not be simply a
filtered average if $u^-$ was to be held constant. Working
closely with my student Alex Watt, I came up with the two-
field  theory  to  evaluate  the  conditional  average
approximately; and this produced a considerable improvement by
reducing the dependence on the choice of spatial rescaling
factor [1]. Early in 1991, when I returned from the US where I
had  visited  MSRI,  Berkeley,  with  a  side  visit  to  the
Turbulence Centre at Stanford, we began work on a formulation
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of the conditional average, in which we were joined by another
of my students, Bill Roberts. Some questions had arisen during
my trip to the States and that lent additional impetus to this
work. If memory serves, the key realisation that a conditional
average  of  the  type  we  were  using  was  impossible  for  a
macroscopic deterministic system was due to Alex and Bill; and
arose  when  they  were  discussing  this  by  themselves.  This
galvanised  our  approach  and  this  work  was  published  as
reference [2].

Although it defies chronology, we will discuss this theory
first. Consider a set of realizations $\{u(k,t)\}$, with their
low-$k$ parts clustering around one particular member of the
set $v^-(k,t)$, such that \[u^-(k,t)=v^-(k,t) + \phi^-(k,t),\]
where $\phi^-$ is the control parameter for the conditional
average $\langle \dots \rangle_c$ and is chosen to satisfy
\[\langle  \phi^-  \rangle_c  =  0  \qquad  \mbox{and}  \qquad
\langle u^- \rangle_c = v^-.\] In principle bounds on $\phi^-$
can be determined from a predictability study of the NSE, but
clearly the more chaotic it is, the smaller is $\phi^-$, and
of  course  when  the  conditional  average  is  of  modes  with
asymptotic freedom, $\phi^- = 0$.

The two-field theory was put forward in [1] and the essential
step was to write the high-$k$ modes in terms of a new field
$w^+$, thus \[u^+ = w^+ + \Delta^+.\] Here $w^+$ is of the
same general type as $u^+$ but is not coupled to $u^-$. We
identified a form for $\Delta^+$ by making an expansion of the
velocity field in Taylor series in wavenumber about $k_0$. We
tested the theory by predicting a value for $\alpha$, the pre-
factor in the Kolmogorov spectrum and found this to be much
less sensitive to the value of the bandwidth parameter. This
theory involved two plausible approximations and these were
later subsumed into a consistent perturbation expansion in
powers of the local (in wavenumber) Reynolds number, along
with  the  expansion  of  the  chaotic  velocity  field  being
replaced by an equivalent expansion of the covariance. The



current situation is that we predict $\alpha = 1.62 \pm 0.05$
over the range $0.2 \leq \eta \leq 0.6$ of the bandwidth
parameter. Evidently this breaks down for $\eta \leq 0.2$ as
the band is so small that integrals are dominated by behaviour
near the lower cut-off wavenumber; while for $\eta \geq 0.6$
the breakdown is due to the inadequacy of the first-order
truncation of the Taylor series for a large bandwidth.

Fraction  of  energy  (full  line)  and  dissipation
(dashed line) lost due to truncation at a specific
wavenumber. This figure is from reference [4].

 

 

In carrying out this analysis, we eliminate modes starting
from a maximum value of $k=k_0$ and end up with the onset of
scale-invariance  at  a  fixed-point  wavenumber  which  is  a
fraction of $k_0$. This fixed point is the top of the inertial
range of wavenumbers and, although this is not a precisely



defined wavenumber, experimentalists have traditionally taken
it  to  be  $0.1  k_d  -0.2k_d$,  where  $k_d$is  the  Kolmogorov
wavenumber. If we take $k_0 = 1.6 k_d$ (see the figure which
is taken from reference [4]) and consider the case $\eta =
0.5$, where the fixed point occurs at the fourth iteration, we
find the numerical value of the fixed-point wavenumber is
$k_{\ast} = (0.5)^4 1.6k_d = 0.1k_d$, in pretty good agreement
with the experimental picture.

To  sum  up,  this  method  seems  to  represent  the  inertial
transfer of energy rather well. But, as it stands, if offers
nothing  on  the  phase-coupling  effects  in  the  momentum
equations  which  are  usually  referred  to  as  eddy  noise.
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