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At  the  beginning  of  the  1980s  I  was  still  involved  in
experimental work on drag reduction; while, on the theoretical
side, I had begun numerical evaluation of the LET theory. One
day I went into the lab to help a student who was having
problems with his laser anemometer. In those days we used a
digital  voltmeter  to  obtain  the  mean  velocity  and  an  rms
voltmeter to obtain (you’ve guessed it!) the rms velocity.
Actually at that stage we had begun recording the anemometer
output  voltage  and  taking  it  away  for  A/D  conversion  and
subsequent processing on a computer. But we still used the
voltmeters for setting things up, and essentially the rule of
thumb was to turn up the value of the time constant until the
reading became steady.

It was while my student was playing with these things, that I
started  thinking  that  it  was  Reynolds’s  introduction  of
averaging which had created the closure problem, and (this is
very profound!) if we didn’t average then we wouldn’t have
that problem. So how would it be if we averaged over a very
short time? Would we have a small version of the closure
problem? One perhaps that would be more easily solved, and
then one could average the resulting smoothed system over a
slightly longer time; and so on. I began to picture replacing
Reynolds averaging with a series of smoothing operations, over
progressively  longer  times,  and  with  some  approximate
calculation at each stage. So one might envisage replacing the
Reynolds equation with a form in which the Reynolds stresses
did not occur as such, but were represented by a constitutive
relationship derived during the preceding iterations plus the
unaveraged portion of the nonlinear term.

I began working on this idea and ultimately it was published
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as reference [1]. What I want to do here is make a couple of
general points about this analysis, but first I will explain
the basic idea. Suppose we have a quasi-steady mean flow, in
which external conditions (e.g. applied pressure gradients,
boundary conditions) vary with time over scales which are long
with respect to the scales of the turbulent energy transfer
processes.  Then  we  may  define  the  mean  velocity  as:
\begin{equation}\overline{U(t)}  =  \frac{1}{2T}\int_{-T}^{T}\,
U(t+s)\,ds,\end{equation} where $2T$ is large enough to smooth
out  the  turbulent  fluctuations,  but  shorter  than  the
timescales of external variations. Of course, if the mean flow
is  actually  steady,  then  we  can  take  the  limit  where
$T\rightarrow \infty$ in the usual way. In either case, we may
obtain the fluctuating velocity $u$ in the usual way, thus:
\[u=U-\overline{U},\]  where  trivially  it  follows  that
$\overline{u} =0$. Note that this analysis is in real space,
but to keep things simple I’m omitting space variables and the
vector nature of velocity.

Next  let  us  generalise  the  above  smoothing  operation  to
\begin{equation}  \langle  U(t)\rangle_0
=\int_{\infty}^{\infty}\, U(t+s) a_0(s)\, ds, \end{equation}
where  \[\int_{-\infty}^{\infty}  \,  a_0(s)\,  ds  =1.\]  The
analogue of the fluctuating velocity from Reynolds averaging
can be defined in an analogous way, thus: \[u_{0}(t) = U(t) –
\langle  U(t)  \rangle_0.\]  Evidently  the  actual  limits  of
integration are determined in practice by the choice of the
weight function $a_0(t)$ and I began with the natural choice
of the Heaviside unit function multiplied by $1/2\tau_0$ and
defined on $-\tau_0 \leq t \leq \tau_0$, where $\tau_0$ is
very small compared to any relevant turbulence timescale, but
otherwise arbitrary. With this choice, our smoothing operation
is just the first operation above, with $T=\tau_0$. Then,
repeating the process with $\tau_1 > \tau_0$, and so on, for
ever increasing smoothing times, would ultimately take us back
to Reynolds averaging. But this is not the choice of $a_0$
that I made in [1], and I will come back to that.



At that time, the success of the renormalization group (RG) in
the theory of critical phenomenon was becoming well known and
it occurred to me that my underlying iterative method could be
turned into a RG calculation. To do this, I dropped the shear
flow  aspects  and  specialised  the  theory  to  isotropic
turbulence. Then I used Fourier transform with respect to time
to introduce the angular frequency $\omega$; and invoked the
Taylor hypothesis to introduce the wavenumber $k$. Hence I had
turned my iterative averaging over time, into an iterative
form of mode elimination which led to a fixed point for the
effective viscosity arising from the eliminated modes.

This was the form of the paper submitted for publication. The
referee was Bob Kraichnan and, although broadly happy with the
paper, he expressed a concern that the wavenumber bands were
not clearly defined. I agreed with this and fixed the problem
by choosing a new weight function to be \[a_0(t) = (1/\tau_0)
sinc (\omega t/\tau_0),\] where $sinc$ is the sine over its
argument, and this is how the paper was published. There were
two broad consequences of this.

First, I am left with the feeling that I didn’t actually do
what I set out to do; and reformulate Reynolds averaging.
Unfortunately, due to the pandemic, my older notebooks are not
available to me, so a fresh look at that aspect will have to
wait. Secondly, this was the beginning of a number of years
working on RG applied to turbulence. There was a lot more to
it than I imagined at the early stage and an overview and
exposition of the current situation can be found in reference
[2].  I  intend  to  follow  this  post  with  some  remarks  and
observations on the application of RG to turbulence in future
posts.
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