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In my post of 27 February I discussed the importance of being
aware of the full form of the Lin equation as this reveals the
existence of a cascade in wavenumber space. In this post I
want to take this a bit further, using my resolution of the
scale-invariance paradox [1].

For me this topic first arose during a meeting in 1991 at
MSRI, Berkeley. When I had finished my talk, Bob Kraichnan
came up to me with a copy of my recently published book and
pointed out Figure 2.5, which was a plot of the terms in the
Lin equation for freely decaying turbulence. He commented on
the fact that the transfer spectrum $T(k)$ was shown as zero
for an extended range of values of $k$. He commented that
people used to think that was the case, because it would be
expected from the scale-invariance of the flux, but that in
practice it was never observed. There was always a single
zero-crossing. I was able to reassure him that figure was
based on a computation of the LET theory; that there had been
an error which had now been rectified; and that the revised
figure would show a single zero-crossing and would appear in
the paperback edition of the book to be published later that
year.

However, I was left with a nagging feeling that there was an
unresolved problem with this result. The first measurements of
$T(k)$ had been published by Uberoi [2] in 1963, and this
author had said that the single zero-crossing was probably due
to the low Reynolds number and indicated that he would expect
$T(k)=0$  over  an  extended  range  of  $k$  to  develop  with
increasing Reynolds number. Although this does not seem to
have  been  a  matter  of  widespread  concern,  over  the
1970s/80s/90s various ad hoc methods were used to cope with
this behaviour in numerical calculations: for some references
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to this work, see [1]. As a matter of interest, I include both
versions of Figure 2.5 below.

Figure 2.5 from Physics of
Fluid Turbulence 1990

Figure 2.5 from Physics of
Fluid Turbulence 1991

 

 

 



 

 

 

 

 

 

 

The  Lin  equation  (see  reference  [3])  takes  the  form:
\begin{equation}  \left(  \frac{d}{dt}  +  2  \nu  k^2  \right)
E(k,t) = T(k,t)\label{enbalt}\end{equation} where $E(k,t)$ is
the energy spectrum, $T(k,t)$ is the energy transfer spectrum
and $\nu$ is the kinematic viscosity. Now let us integrate
each term of (\ref{enbalt}) with respect to wavenumber, from
zero  up  to  some  arbitrarily  chosen  wavenumber  $\kappa$:
\begin{equation} \frac{d}{dt}\int_{0}^{\kappa} dk\, E(k,t) =
\int^{\kappa}_{0} dk\, T(k,t)-2 \nu\int_{0}^{\kappa} dk\, k^2
E(k,t). \label{fluxbalt1} \end{equation} The energy transfer
spectrum  may  be  written  as  \begin{equation}  T(k,t)  =
\int^{\infty}_{0}  dj\,  S(k,j;t),  \label{ts}\end{equation}
where, as is well known, $S(k,j;t)$ can be expressed in terms
of the triple moment. Its antisymmetry under interchange of
$k$  and  $j$  guarantees  energy  conservation  in  the  form:
\begin{equation}\int^{\infty}_{0}  dk\,  T(k,t)  =0.
\label{encon}  \end{equation}

With some use of the antisymmetry of $S$, along with equation
(\ref{encon}), equation (\ref{fluxbalt1}) may be written as
\begin{equation}\frac{d}{dt}\int_{0}^{\kappa} dk\, E(k,t) = –
\int^{\infty}_{\kappa}  dk\,\int^{\kappa}_{0}  dj\,  S(k,j;t)-2
\nu\int_{0}^{\kappa}  dk\,  k^2
E(k,t).\label{fluxbalt2}\end{equation}  the  integral  of  the
transfer term is readily interpreted as the net flux of energy



from wavenumbers less than $\kappa$ to those greater than
$\kappa$, at any time $t$.

It is convenient to introduce a specific symbol $\Pi$ for this
energy  flux,  thus:  \begin{equation}\Pi  (\kappa,t)  =
\int^{\infty}_{\kappa}  dk\,  T(k,t)  =-\int^{\kappa}_{0}
dk\,T(k,t),\label{tp}\end{equation} where the second equality
follows from (\ref{encon}).

The key to resolving the paradox is to introduce transfer
spectra which have been filtered with respect to $k$ and which
have had their integration over $j$ partitioned at the filter
cut-off, i.e. $j=k_c$ [1],[4]. Beginning with the Heaviside
unit step function, defined by:
\begin{eqnarray} H(x) & = & 1 \qquad \mbox{for} \qquad x > 0;
\\& = & 0 \qquad \mbox {for} \qquad x < 0.\end{eqnarray} we
may  define  low-pass  and  high-pass  filter  functions,  thus:
\begin{equation}\theta^{-}(x)  =  1  –  H(x),\end{equation}  and
\begin{equation} \theta^{+}(x) = H(x). \end{equation} We may
then decompose the transfer spectrum, as given by (\ref{ts}),
into four constituent parts, \begin{equation}T^{–}(k|k_{c}) =
\theta^{-}(k-k_{c})\int^{k_{c}}_{0}dj\,  S(k,j);
\label{tmm}\end{equation}  \begin{equation}  T^{-+}(k|k_{c})  =
\theta^{-}(k-k_{c})\int^{\infty}_{k_{c}}dj\,  S(k,j);
\label{tmp}\end{equation}  \begin{equation}  T^{+-}(k|k_{c})  =
\theta^{+}(k-k_{c})\int^{k_{c}}_{0}dj\,  S(k,j);  \label{tpm}
\end{equation}  and  \begin{equation}T^{++}(k|k_{c})  =
\theta^{+}(k-k_{c})\int^{\infty}_{k_{c}}dj\,
S(k,j),\label{tpp}  \end{equation}  such  that  the  overall
requirement  of  energy  conservation  is  satisfied:
\begin{equation}  \int^{\infty}_{0}dk\left[T^{–}(k|k_{c})  +
T^{-+}(k|k_{c}) + T^{+-}(k|k_{c}) + T^{++}(k|k_{c})\right] =
0. \end{equation}It is readily verified that the individual
filtered/partitioned  transfer  spectra  have  the  following
properties:  \begin{equation}  \int^{k_{c}}_{0}dk\,
T^{–}(k|k_{c}) = 0; \label{mm} \end{equation} \begin{equation}
\int^{k_{c}}_{0}dk\, T^{-+}(k|k_{c}) = -\Pi(k_{c});\label{mp}



\end{equation} \begin{equation}\int^{\infty}_{k_{c}}dk\, T^{+-
}(k|k_{c})  =  \Pi(k_{c});  \label{pm}  \end{equation}  and
\begin{equation}  \int^{\infty}_{k_{c}}dk\,  T^{++}(k|k_{c})  =
0. \label{pp} \end{equation} Equation (\ref{fluxbalt1}) may be
rewritten  in  terms  of  the  filtered/partitioned  transfer
spectrum as: \begin{equation} \frac{d}{dt}\int^{k_{c}}_{0}dk\,
E(k,t)  =  -\int^{\infty}_{k_{c}}dk\,  T^{+-}(k|k_{c})
-2\nu_{0}\int^{k_{c}}_{0}dk\, k^{2}E(k,t). \label{fluxbaltmod}
\end{equation}  We  note  from  equation  (\ref{mm})  that
$T^{–}(k|k_c)$ is conservative on the interval $[0,k_c]$, and
hence  does  not  appear  in  (\ref{fluxbaltmod}),  while  $T^{-
+}(k|k_{c})$ has been replaced by $-T^{+-}(k|k_{c})$, using
(\ref{mp})  and  (\ref{pm}).  Those  working  with  DNS  or
analytical theory, can avoid the paradox by changing their
definition of energy fluxes, from those given by (\ref{tp}),
to  the  forms:  \begin{equation}  \Pi  (\kappa,t)  =
\int^{\infty}_{\kappa}  dk\,  T^{+-}(k|\kappa,t)  =-
\int^{\kappa}_{0}  dk\,  T^{-+}(k|\kappa,t),\label{tpmod}
\end{equation}  where  $T^{+-}(k|\kappa,t)$  is  defined  by
(\ref{tpm}) and $T^{-+}(k|\kappa,t)$ by (\ref{tmp}). This is
equivalent to (\ref{tp}); but, unlike it, avoids the paradox.

This behaviour is illustrated in the figure below, where we
should note that $T^{-+}(k|\kappa)$ is defined below the cut-
off wavenumber $\kappa = k_{c}$, and $-T^{+-}(k|\kappa)$ is
defined above it.

 



Modified  form  of  transfer  spectrum  to
avoid the scale-invariance paradox.

 

This  raises  the  question  of  how  exactly  the  Lin  equation
should be written, in order to emphasise these properties.
That  will  be  the  subject  of  a  paper  which  is  now  in
preparation  [5].  It  is  worth  making  the  point  that  the
filtered-partitioned forms of the transfer spectrum have only
been studied in the context of the subgrid modelling problem
[4]. Given the much more powerful computers now available, it
would undoubtedly be rewarding to study the role of these
terms in the energy balance for a range of Reynolds numbers. I
very much hope that someone will do this.

Acknowledgement:  the  above  figure  was  suggested  by  John
Morgan, who also prepared it.
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