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Free decay of isotropic turbulence as a test problem.

When  I  began  my  postgraduate  research  in  1966,  I  quickly
decided that there was one problem that I would never work on.
That was the free decay of the kinetic energy of turbulence
from  some  initial  value.  Although,  as  the  subject  of  my
postgraduate  research  was  the  turbulence  closure  problem,
there didn’t seem to be any danger of my being asked to do so.

This particular free decay problem, as widely discussed in the
literature, can, if one likes, be regarded as a reduced form
of the general closure problem. Instead of trying to calculate
the  two-point  correlation  (or,  equivalently,  the  energy
spectrum), one is simply trying to calculate the decay curve
with time of the total energy. This involves making various
assumptions about the nature of the decay process and the most
crucial seemed to be that a certain integral was constant with
respect to time during the decay: this was generally referred
to as the Loitsyansky invariant.

We can introduce this by considering the behaviour of the
energy spectrum at small values of the wavenumber $k$. This
can be written as a Taylor polynomial \[E(k,t) = E_2(t)k^2 +
E_4(t)k^4 + \dots .\] Here the coefficient $E_4(t)$, when
Fourier transformed to real space, is known as the Loitsyansky
integral, and in general it depends on time. It seemed that
this  was  indeed  invariant  during  decay  for  the  case  of
isotropic turbulence but it had been shown that this was not
necessarily  the  case  for  turbulence  that  was  merely
homogeneous.  The  problem  was  that  a  correlation  of  the
velocity with the pressure, which is suppressed by symmetry in
the isotropic case, existed in the more general case. The
difficulty here is that the pressure can be expressed as an
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integral  over  the  velocity  field  and  so  the  correlation
$\langle  u  p  \rangle$  is  long-range  in  nature,  and  this
invalidates the proof of invariance of $E_4$ which works for
the isotropic case.

So far so good. What puzzled me at the time was that this
failure in the more general case somehow seemed to contaminate
the  isotropic  case.  People  working  in  this  field  seemed
unwilling  to  reply  on  the  invariance  of  $E_4$  even  for
isotropic turbulence. However, with the accretion of knowledge
over the years (I’d like to claim wisdom as well, but that
might be too big a stretch!), I believe that I understand
their concerns. At the time, the only practical application of
the  theory  was  to  grid  turbulence;  and  although  this  was
reckoned to be a good approximation to being isotropic, it
might not be perfect; and it might vary to some extent from
one experimental apparatus to another. And just to add to the
confusion, at about that time (although I didn’t know it)
Saffman  published  a  theory  of  grid  turbulence  in  which
$E_2(t)$ was an invariant. This led to controversy based on
$E_2$ versus $E_4$ which is with us to this day.

In more recent years, I have had to weaken my position on this
matter, because my students have found it interesting to do
free-decay calculations, in order to compare our simulations
with those of others. So when I was preparing my recent book
on HIT, I decided it would provide a good reason to really
look into this topic. As part of this work, I was checking
various results and to my astonishment, when I worked out
$E_2$ I found that it was exactly zero. This work has been
published and includes a new proof of the invariance of $E_4$
which is based on conservation of energy [1]. In passing, I
should note that the refereeing process for this paper was
something that I found educational and I will refer to that in
future posts when I get onto the subject of peer review.

Shortly  after  I  published  this  work,  a  paper  on  grid
turbulence appeared and it seemed that their results suggested



that $E_2$ was non-zero. I sent a copy of [1] to the author
and he replied `evidently grid turbulence is less isotropic
than we thought’. This struck me as a crucial point. If we are
to  make  progress  and  have  meaningful  discussions  on  this
topic,  we  need  to  recognise  that  free  decay  of  isotropic
turbulence and grid turbulence are two different problems. In
fact, as things have moved on from the mid-sixties, we also
have to consider DNS of free decay as being in principle a
different problem. Let us now examine the three problems in
turn, as follows:

1.  Free  decay  of  the  turbulent  kinetic  energy  is  a
mathematical problem which can be formulated precisely for
homogeneous isotropic turbulence.

2. Grid-generated turbulence evolves out of an ensemble of
wakes and is stationary with time and inhomogeneous in the
streamwise direction. In order to make comparisons with free
decay, it is necessary to invoke Taylor’s hypothesis of frozen
convection.

3. DNS of freely decaying turbulence is based on the Navier-
Stokes equations discretised on a lattice. Quite apart from
the errors involved (analogous to experimental error in the
grid-turbulence case), representation on a lattice is symmetry
breaking for all continuous symmetries. The two principal ones
in this case are Galilean invariance and isotropy.

Essentially, these are all three different problems and if we
wish to make comparisons we have to at least bear that fact in
mind. I have lost count of the many heated arguments that I
have heard or taken part in over the years which ran along the
lines: A says `The sky is blue!’ and B replies: `Oh no, I
assure you that grass is green!’ In other words they are not
talking about the same thing. That may seem rather extreme but
supposing one is momentum conservation and the other is energy
conservation. Such a waste of time and energy (and momentum,
for that matter).



[1] W. D. McComb. Infrared properties of the energy spectrum
in  freely  decaying  isotropic  turbulence.  Phys.  Rev.  E,
93:013103, 2016.

Stationary  isotropic
turbulence as a test problem.
Stationary isotropic turbulence as a test problem.

When I was first publishing, in the early 1970s, referees
would often say something like `the author uses the turbulence
in a box concept’ before going on to reveal a degree of
incomprehension about what I might be doing, let alone what I
actually was doing. A few years later, when direct numerical
simulation (DNS) had got under way, that phrase might have had
some significance; and indeed its use is now common, albeit
qualified by the word `periodic’. Of course, when Fourier
methods were introduced by Taylor in the 1930s, it was in the
form of Fourier series. But by the 1960s it was becoming usual
among theorists to briefly introduce Fourier series and then
take the infinite system limit and turn them into Fourier
transforms: or, increasingly, just to formulate the problem
straightaway in the infinite system. However, it can be worth
one’s while starting with the finite cubic box of side L, and
thinking in terms of the basic physics, as well as the Fourier
methods.

In order to represent the velocity field in terms of Fourier
series,  we  introduce  the  wavevector
\[\mathbf{k}=(2\pi/L)\{n_1,n_2,n_3\},\]  where  the  integers
$n_1,n_2,n_3$ all lie in the range from $-\infty$ to $\infty$.
Fourier  sums  are  taken  over  the  discrete  values  of
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$\mathbf{k}$. Then the transition to the continuous, infinite
system is made by taking the limit of infinite system size,
such  that  \[\lim_{L\rightarrow
\infty}\left(\frac{2\pi}{L}\right)^3\sum_{\mathbf{k}}  =  \int
d^3\,k.\] As ever in physics, we assume that everything is
well-behaved; and that both the field variables and their
transforms exist, being independent of system size as we go to
this limit.

We  do  not  have  to  restrict  these  ideas  to  the  Fourier
representation.  They  are  generally  true  when  we  make  the
transition from classical mechanics to continuum mechanics. To
do this, we begin with a finite system and replace discrete
objects by densities. A continuous (or field) representation
is introduced by defining continuous densities in the limit of
infinite  system  size.  All  physical  observables  must  be
expressed in terms of densities or rates. They cannot depend
on the size of the system, otherwise we would be unable to
take the continuum limit. So, if we formulate turbulence in
real space in terms of structure functions in a box, then
theoretical  expressions  for  the  structure  functions  (or
equivalently, the moments) must not depend on the size of the
box. This provides us with a basic first test for any theory;
and to our knowledge there have been some surprising failures
to recognise this. We will come back to two specific examples
presently. First we will look at the general question of how
to test theories.

Now,  stationary  isotropic  turbulence  can  be  rigorously
formulated as a mathematical problem, where `rigour’ is taken
to be in the sense of theoretical physics, but it does not
occur in nature or indeed in the laboratory. It is true that
it may occur to a reasonable approximation in geophysical and
astronomical flows, but at the moment it seems that DNS might
be our best bet for testing mathematical theories of isotropic
turbulence. So it behoves us to examine the question: how
representative is DNS of the mathematical problem that we are



studying?

Well, of course DNS has been an active field of research for
several decades now and this aspect has not been neglected.
Nevertheless, one is left with the impression that it is very
much  a  pragmatic  activity,  governed  by  `rule  of  thumb’
methods. For instance, when we began DNS at Edinburgh in the
1990s, I asked around for advice on the maximum value of the
wavenumber that we should use, as this seemed to vary from
less than the Kolmogorov dissipation wavenumber to very much
greater. The consensus of advice that I received was to choose
$k_{max} = 1.5 k_d$, and this is what we did. Later on, in
2001,  we  demonstrated  a  rational  procedure  for  choosing
$k_{max}$: see Figure 2 of reference [1] or Figure 1.6 of
reference [2]. One conclusion that emerges from this, is that
to resolve the dissipation rate might mean devoting one’s
entire simulation to the dissipation range of wavenumbers!

In recent years there seems to have been more emphasis on
resolving the largest scale of the turbulence, although much
of this work has been for the case of free decay. But concerns
remain, particularly in the terms of experimental error. It is
also necessary to note a fundamental problem. The mere fact of
representing  the  continuum  NSE  on  a  discrete  lattice  is
symmetry breaking for Galilean invariance and isotropy, to
name but two. I’m not sure how one can take this into account,
except by considering a transition towards the continuum limit
and  looking  for  asymptotic  behaviour.  This  could  involve
starting with a `fully resolved’ simulation and looking at
increasingly finer mesh sizes. To say the least this would be
very expensive in terms of computer storage and run time.
Naturally,  workers  in  the  field  always  want  the  highest
possible Reynolds number. But, if you begin with low Reynolds
numbers,  it  is  cheap  and  easy  to  do,  and  you  can  learn
something  from  the  variation  of  observables  with  Reynolds
number.  There  exist  some  well-known  simulations  that  have
employed vast resources to achieve enormous Reynolds numbers



and yet provide only a few spot values without any error bars,
with no indication of asymptotic behaviour, and I understand
suspicions about how well-resolved they are. An awful warning
to us all!

Lastly, two more awful warnings. First, as we discussed in the
previous post, Kraichnan’s asymptotic solution of DIA depends
on the largest scale of the system. That in itself is enough
to rule it out as unphysical, whether one accepts Kolmogorov
(1941) or not. However, as I pointed out, our computations at
Edinburgh  do  not  support  this  asymptotic  form,  which  was
obtained  analytically  using  approximations  that  Kraichnan
found plausible. A critical examination of that analysis is in
my opinion long overdue.

Secondly, we have the Kolmogorov (1962) form of the energy
spectrum,  which  also  depends  on  the  largest  scale  of  the
system. Probably few people now take this work seriously, but
its baleful presence influences the turbulence community and
lends  credence  to  the  increasingly  unrealistic  idea  of
intermittency corrections. In fact it has recently been shown
that the inclusion of the largest scale destroys the widely
observed scaling on Kolmogorov variables [3]. This should have
been obvious, without any need to plot the graphs!

[1] W. D. McComb, A. Hunter, and C. Johnston. Conditional
mode-elimination  and  the  subgrid-modelling  problem  for
isotropic turbulence. Phys. Fluids, 13:2030, 2001.

[2]  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.

[3] W. D. McComb and M. Q. May. The effect of Kolmogorov
(1962)  scaling  on  the  universality  of  turbulence  energy
spectra. arXiv:1812.09174[physics.fluid-dyn], 2018.



Asymptotic  behaviour  of  the
Direct  Interaction
Approximation.
Asymptotic behaviour of the Direct Interaction Approximation.
As mentioned previously, Kraichnan’s asymptotic solution of
the DIA, for high Reynolds numbers and large wavenumbers, did
not  agree  with  the  observed  asymptotic  behaviour  of
turbulence.  His  expression  for  the  spectrum  was
$E(k)=C’\varepsilon^{1/2}U^{1/2}k^{-3/2}$,  where  $U$  is  the
root-mean-square velocity and $C’$ is a constant. In 1964 (see
[1] for the reference) he wrote: `Recent experimental evidence
gives strong support to [the Kolmogorov `-5’3’ form] and rules
out [the `-3/2’ form above] as a correct asymptotic law.’

However,  Kraichnan’s  result  is  not  actually  an  asymptotic
form. The rms velocity $U$ is in fact part of the solution,
not the initial conditions. We may underline this by writing
$U= [\int_0^\infty \, E(k)\,dk]^{1/2}$, which allows us to
rewrite  the  Kraichnan  result  as  $E(k)=C’
\varepsilon^{1/2}[\int_0^\infty  \,  E(k)\,dk]^{1/4}\,
k^{-3/2}$. So, far from being an asymptotic solution, this
appears to be a form of transcendental equation for the energy
spectrum.

Now you may object that the dissipation rate is also part of
the solution, rather than of the initial conditions, and hence
this is also a criticism of the Kolmogorov form. But this is
not so. The dissipation only appears because it is equal to
the inertial transfer rate. From the simple physics of the
inertial range in wavenumber space, the appropriate quantity
is the maximum value of the inertial flux of energy through
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modes, which we will denote by $\varepsilon_T$. Hence the
Kolmogorov  form  should  really  be  $E(k)  \sim
\varepsilon_T^{2/3}k^{-5/3}$. Of course Kolmogorov worked in
real space and derived the `2/3’ law. But in 1941 Obukhov
recognised that in wavenumber space the relevant quantity was
the scale-invariant energy flux, as did Onsager a few years
later.

A way of putting the Kraichnan result in a more asymptotic
form was given by McComb and Yoffe [1], who made use of the
asymptotic  Taylor  surrogate  for  the  dissipation  rate,
$\varepsilon = C_{\varepsilon,\infty} U^3/L$, where $L$ is the
integral length scale and $ C_{\varepsilon,\infty} = 0.468 \pm
0.006$ [2], to substitute for $U$ in the Kraichnan spectrum,
and  obtained:  $E(k)  =
C’C_{\varepsilon,\infty}^{-1/3}\varepsilon^{2/3}L^{\beta}k^{-5
/3 + \beta}$, where $\beta = 1/6$. Note that we have changed
$\mu$ in that reference to $\beta$ in order to avoid any
confusion with the so-called intermittency correction, which
normally is represented by that symbol.

Kraichnan only computed the Eulerian DIA for free decay at low
Reynolds numbers. However, in 1989 McComb, Shanmugasundaram
and Hutchinson [3] reported calculations for free decay of
both DIA and LET for Taylor-Reynolds numbers in the range $0.5
\leq R_{\lambda}(t_f ) \leq 1009$ where $t_f$ is the final
time of the computation. These results do not support the
asymptotic form of the DIA energy spectrum, as given above. It
was found that (for example) at $ R_{\lambda} ( t_f) = 533$,
the two theories were virtually indistinguishable and both
gave the Kolmogorov spectrum to within the accuracy of the
numerical methods. It was shown that this result was not an
artefact of the initial conditions, by taking $k^{-3/2}$ as
the  initial  spectrum,  whereupon  it  was  found  that  both
theories  evolved  away  from  this  form  to  once  again  give
$k^{-5/3}$ as the final spectrum.

There is much that remains to be understood about Eulerian



turbulence  theories  and  the  behaviour  of  two-time
correlations.

[1] W. D. McComb and S. R. Yoffe. A formal derivation of the
local energy transfer (LET) theory of homogeneous turbulence.
J. Phys. A: Math. Theor., 50:375501, 2017.
[2] W. D. McComb, A. Berera, S. R. Yoffe, and M. F. Linkmann.
Energy  transfer  and  dissipation  in  forced  isotropic
turbulence.  Phys.  Rev.  E,  91:043013,  2015.
[3] W. D. McComb, V. Shanmugasundaram, and P. Hutchinson.
Velocity  derivative  skewness  and  two-time  velocity
correlations of isotropic turbulence as predicted by the LET
theory. J. Fluid Mech., 208:91, 1989.

A brief summary of two-point
renormalized  perturbation
theories.
A  brief  summary  of  two-point  renormalized  perturbation
theories.
In  the  previous  post  we  discussed  the  introduction  of
Kraichnan’s  DIA,  based  on  a  combination  of  a  mean-field
assumption and a new kind of perturbation theory, and how it
was  supported  by  Wyld’s  formalism,  itself  based  on  a
conventional perturbation expansion of the NSE. This was not
too surprising, as Kraichnan’s mean field assumption involved
his infinitesimal response function which the Wyld comparison
showed was the same as the viscous response function, and
hence not a random variable. By 1961 it was known that the
asymptotic solution of DIA was incorrect, with implications
for both the Wyld formalism (and the MSR formalism later on:
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see previous post).

The next step forward was the theory of Edwards [1] in 1964,
which  was  restricted  to  the  more  limited  single-time
covariance and also to the stationary case. This took as its
starting point the Liouville equation for $P$, the probability
distribution functional of the velocity field, and went beyond
the  mean-field  case  to  calculate  corrections  to  it  self-
consistently. That is, Edwards made the substitution $P\equiv
P_0 + (P –P_0)$ and then expanded in powers of the correction
term $\Delta P = P – P_0$. Then, taking $P_0$ to be Gaussian,
and exploiting the symmetries of the system, Edwards gave a
highly intuitive treatment of the problem, in which he drew
strongly on an analogy with the theory of Brownian motion. It
turned out that the resulting theory was closely related to
the  DIA  and,  like  it,  did  not  agree  with  the  Kolmogorov
spectrum.

The following year Herring [2], using formal methods of many-
body theory, produced a self-consistent field theory which was
much more abstract than the Edwards one, but yielded the same
energy equation. Then, in 1966 he generalised this theory to
the two-time case [3]. All three theories [1-3] led to the
same energy equation as DIA, but all differed in the form of
the response equation.

Now, it is in the introduction of the response equation that
the renormalization takes place, and it is in the form of the
response equation that the deviation from Kolmogorov lies, so
this  difference  between  these  response  equations  raises
fundamental  questions  about  all  these  theories.  Various
interpretations were offered at the time, but these were all
phenomenological  in  character.  It  was  much  later  that  a
uniform, fundamental diagnosis was offered and I will come on
to that presently. But this was the situation when I began
post-graduate research with Sam Edwards in October 1966. The
exciting developments of the previous decade seemed to be
leading to a dead end, and my first task was to choose the



response function of the Edwards theory in a new way, such
that it maximised the turbulent entropy [4].

On the basis of the Edwards analysis, his theory had failed
under the extreme circumstances of an infinite Reynolds number
limit, in which the input was modelled by a delta-function at
the origin in $k$-space and the dissipation was represented by
a  delta-function  at  $k=\infty$.  Edwards  argued  that  under
these circumstances the Kolmogorov spectrum would apply at all
wavenumbers, and in his original theory this led to an infra-
red divergence in the integral for the response function.
(Note: Kraichnan used the scale-invariance of the inertial
flux $\Pi$ as his criterion for the inertial range, but the
two  methods  are  mathematically  equivalent.)  The  `maximum
entropy’  theory  [4]  certainly  achieved  the  result  of
eliminating the infra-red divergence, but that was about as
much as one could say for it. It became clearer to me later
that it was not a very sound approach.

It is a truism in statistical physics that a system is either
dominated by entropy or energy. If we consider a system made
of many microscopic magnets on a lattice then the entropy will
determine the distribution. However if we switch on a powerful
external magnetic field, all the little magnets will line up
with it and (small fluctuations aside) entropy has no say in
the matter! It is just like that in turbulence. The system is
dominated by a symmetry breaking current of energy through the
modes, running from small to large wavenumbers, where it is
dissipated by viscosity. There is no real reason to assume
that the entropy determines the turbulence response.

When I was in my first post-doctoral job, I gave a talk to
some  theorists.  I  explained  my  early  ideas  on  how  energy
transfer might determine the turbulence response. They heard
me out politely, and then I made the mistake of mentioning the
maximum entropy work. Immediately they became enthusiastic.
‘Tell us about that’, they said. The impression they gave was
‘now that’s a real theory!’ I was in awe of them as they were



much  older  and  more  experienced  than  me,  and  talked  so
authoritatively  about  all  aspects  of  theoretical  physics.
Nevertheless,  this  was  my  first  inkling  of  conventional
thinking. The implication seemed to be: it was a text-book
method, so it must be good.

Over the next few years I developed the local energy transfer
(LET) theory [5, 6], and also offered a unified explanation of
the  failure  of  first-generation  renormalized  perturbation
theories. The further extension of this work to the two-time
case  has  had  a  rather  chequered  history  and  will  be  the
subject of further posts.
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