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When I was first publishing, in the early 1970s, referees
would often say something like `the author uses the turbulence
in a box concept’ before going on to reveal a degree of
incomprehension about what I might be doing, let alone what I
actually was doing. A few years later, when direct numerical
simulation (DNS) had got under way, that phrase might have had
some significance; and indeed its use is now common, albeit
qualified by the word `periodic’. Of course, when Fourier
methods were introduced by Taylor in the 1930s, it was in the
form of Fourier series. But by the 1960s it was becoming usual
among theorists to briefly introduce Fourier series and then
take the infinite system limit and turn them into Fourier
transforms: or, increasingly, just to formulate the problem
straightaway in the infinite system. However, it can be worth
one’s while starting with the finite cubic box of side L, and
thinking in terms of the basic physics, as well as the Fourier
methods.

In order to represent the velocity field in terms of Fourier
series,  we  introduce  the  wavevector
\[\mathbf{k}=(2\pi/L)\{n_1,n_2,n_3\},\]  where  the  integers
$n_1,n_2,n_3$ all lie in the range from $-\infty$ to $\infty$.
Fourier  sums  are  taken  over  the  discrete  values  of
$\mathbf{k}$. Then the transition to the continuous, infinite
system is made by taking the limit of infinite system size,
such  that  \[\lim_{L\rightarrow
\infty}\left(\frac{2\pi}{L}\right)^3\sum_{\mathbf{k}}  =  \int
d^3\,k.\] As ever in physics, we assume that everything is
well-behaved; and that both the field variables and their
transforms exist, being independent of system size as we go to
this limit.
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We  do  not  have  to  restrict  these  ideas  to  the  Fourier
representation.  They  are  generally  true  when  we  make  the
transition from classical mechanics to continuum mechanics. To
do this, we begin with a finite system and replace discrete
objects by densities. A continuous (or field) representation
is introduced by defining continuous densities in the limit of
infinite  system  size.  All  physical  observables  must  be
expressed in terms of densities or rates. They cannot depend
on the size of the system, otherwise we would be unable to
take the continuum limit. So, if we formulate turbulence in
real space in terms of structure functions in a box, then
theoretical  expressions  for  the  structure  functions  (or
equivalently, the moments) must not depend on the size of the
box. This provides us with a basic first test for any theory;
and to our knowledge there have been some surprising failures
to recognise this. We will come back to two specific examples
presently. First we will look at the general question of how
to test theories.

Now,  stationary  isotropic  turbulence  can  be  rigorously
formulated as a mathematical problem, where `rigour’ is taken
to be in the sense of theoretical physics, but it does not
occur in nature or indeed in the laboratory. It is true that
it may occur to a reasonable approximation in geophysical and
astronomical flows, but at the moment it seems that DNS might
be our best bet for testing mathematical theories of isotropic
turbulence. So it behoves us to examine the question: how
representative is DNS of the mathematical problem that we are
studying?

Well, of course DNS has been an active field of research for
several decades now and this aspect has not been neglected.
Nevertheless, one is left with the impression that it is very
much  a  pragmatic  activity,  governed  by  `rule  of  thumb’
methods. For instance, when we began DNS at Edinburgh in the
1990s, I asked around for advice on the maximum value of the
wavenumber that we should use, as this seemed to vary from



less than the Kolmogorov dissipation wavenumber to very much
greater. The consensus of advice that I received was to choose
$k_{max} = 1.5 k_d$, and this is what we did. Later on, in
2001,  we  demonstrated  a  rational  procedure  for  choosing
$k_{max}$: see Figure 2 of reference [1] or Figure 1.6 of
reference [2]. One conclusion that emerges from this, is that
to resolve the dissipation rate might mean devoting one’s
entire simulation to the dissipation range of wavenumbers!

In recent years there seems to have been more emphasis on
resolving the largest scale of the turbulence, although much
of this work has been for the case of free decay. But concerns
remain, particularly in the terms of experimental error. It is
also necessary to note a fundamental problem. The mere fact of
representing  the  continuum  NSE  on  a  discrete  lattice  is
symmetry breaking for Galilean invariance and isotropy, to
name but two. I’m not sure how one can take this into account,
except by considering a transition towards the continuum limit
and  looking  for  asymptotic  behaviour.  This  could  involve
starting with a `fully resolved’ simulation and looking at
increasingly finer mesh sizes. To say the least this would be
very expensive in terms of computer storage and run time.
Naturally,  workers  in  the  field  always  want  the  highest
possible Reynolds number. But, if you begin with low Reynolds
numbers,  it  is  cheap  and  easy  to  do,  and  you  can  learn
something  from  the  variation  of  observables  with  Reynolds
number.  There  exist  some  well-known  simulations  that  have
employed vast resources to achieve enormous Reynolds numbers
and yet provide only a few spot values without any error bars,
with no indication of asymptotic behaviour, and I understand
suspicions about how well-resolved they are. An awful warning
to us all!

Lastly, two more awful warnings. First, as we discussed in the
previous post, Kraichnan’s asymptotic solution of DIA depends
on the largest scale of the system. That in itself is enough
to rule it out as unphysical, whether one accepts Kolmogorov



(1941) or not. However, as I pointed out, our computations at
Edinburgh  do  not  support  this  asymptotic  form,  which  was
obtained  analytically  using  approximations  that  Kraichnan
found plausible. A critical examination of that analysis is in
my opinion long overdue.

Secondly, we have the Kolmogorov (1962) form of the energy
spectrum,  which  also  depends  on  the  largest  scale  of  the
system. Probably few people now take this work seriously, but
its baleful presence influences the turbulence community and
lends  credence  to  the  increasingly  unrealistic  idea  of
intermittency corrections. In fact it has recently been shown
that the inclusion of the largest scale destroys the widely
observed scaling on Kolmogorov variables [3]. This should have
been obvious, without any need to plot the graphs!
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