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In  the  previous  post  we  discussed  the  introduction  of
Kraichnan’s  DIA,  based  on  a  combination  of  a  mean-field
assumption and a new kind of perturbation theory, and how it
was  supported  by  Wyld’s  formalism,  itself  based  on  a
conventional perturbation expansion of the NSE. This was not
too surprising, as Kraichnan’s mean field assumption involved
his infinitesimal response function which the Wyld comparison
showed was the same as the viscous response function, and
hence not a random variable. By 1961 it was known that the
asymptotic solution of DIA was incorrect, with implications
for both the Wyld formalism (and the MSR formalism later on:
see previous post).

The next step forward was the theory of Edwards [1] in 1964,
which  was  restricted  to  the  more  limited  single-time
covariance and also to the stationary case. This took as its
starting point the Liouville equation for $P$, the probability
distribution functional of the velocity field, and went beyond
the  mean-field  case  to  calculate  corrections  to  it  self-
consistently. That is, Edwards made the substitution $P\equiv
P_0 + (P –P_0)$ and then expanded in powers of the correction
term $\Delta P = P – P_0$. Then, taking $P_0$ to be Gaussian,
and exploiting the symmetries of the system, Edwards gave a
highly intuitive treatment of the problem, in which he drew
strongly on an analogy with the theory of Brownian motion. It
turned out that the resulting theory was closely related to
the  DIA  and,  like  it,  did  not  agree  with  the  Kolmogorov
spectrum.
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The following year Herring [2], using formal methods of many-
body theory, produced a self-consistent field theory which was
much more abstract than the Edwards one, but yielded the same
energy equation. Then, in 1966 he generalised this theory to
the two-time case [3]. All three theories [1-3] led to the
same energy equation as DIA, but all differed in the form of
the response equation.

Now, it is in the introduction of the response equation that
the renormalization takes place, and it is in the form of the
response equation that the deviation from Kolmogorov lies, so
this  difference  between  these  response  equations  raises
fundamental  questions  about  all  these  theories.  Various
interpretations were offered at the time, but these were all
phenomenological  in  character.  It  was  much  later  that  a
uniform, fundamental diagnosis was offered and I will come on
to that presently. But this was the situation when I began
post-graduate research with Sam Edwards in October 1966. The
exciting developments of the previous decade seemed to be
leading to a dead end, and my first task was to choose the
response function of the Edwards theory in a new way, such
that it maximised the turbulent entropy [4].

On the basis of the Edwards analysis, his theory had failed
under the extreme circumstances of an infinite Reynolds number
limit, in which the input was modelled by a delta-function at
the origin in $k$-space and the dissipation was represented by
a  delta-function  at  $k=\infty$.  Edwards  argued  that  under
these circumstances the Kolmogorov spectrum would apply at all
wavenumbers, and in his original theory this led to an infra-
red divergence in the integral for the response function.
(Note: Kraichnan used the scale-invariance of the inertial
flux $\Pi$ as his criterion for the inertial range, but the
two  methods  are  mathematically  equivalent.)  The  `maximum
entropy’  theory  [4]  certainly  achieved  the  result  of
eliminating the infra-red divergence, but that was about as
much as one could say for it. It became clearer to me later



that it was not a very sound approach.

It is a truism in statistical physics that a system is either
dominated by entropy or energy. If we consider a system made
of many microscopic magnets on a lattice then the entropy will
determine the distribution. However if we switch on a powerful
external magnetic field, all the little magnets will line up
with it and (small fluctuations aside) entropy has no say in
the matter! It is just like that in turbulence. The system is
dominated by a symmetry breaking current of energy through the
modes, running from small to large wavenumbers, where it is
dissipated by viscosity. There is no real reason to assume
that the entropy determines the turbulence response.

When I was in my first post-doctoral job, I gave a talk to
some  theorists.  I  explained  my  early  ideas  on  how  energy
transfer might determine the turbulence response. They heard
me out politely, and then I made the mistake of mentioning the
maximum entropy work. Immediately they became enthusiastic.
‘Tell us about that’, they said. The impression they gave was
‘now that’s a real theory!’ I was in awe of them as they were
much  older  and  more  experienced  than  me,  and  talked  so
authoritatively  about  all  aspects  of  theoretical  physics.
Nevertheless,  this  was  my  first  inkling  of  conventional
thinking. The implication seemed to be: it was a text-book
method, so it must be good.

Over the next few years I developed the local energy transfer
(LET) theory [5, 6], and also offered a unified explanation of
the  failure  of  first-generation  renormalized  perturbation
theories. The further extension of this work to the two-time
case  has  had  a  rather  chequered  history  and  will  be  the
subject of further posts.
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