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Theories versus formalisms.
After the catastrophe of quasi-normality, the modern era of
turbulence theory began in the late 1950s, with a series of
papers by Kraichnan in the Physical Review, culminating in the
formal presentation of his direct-interaction approximation
(DIA) in JFM in 1959 [1].

The next step was the paper by Wyld [2], which set out a
formal treatment of the turbulence problem based on, and very
much in the language of, quantum field theory. Wyld carried
out a conventional perturbation theory, based on the viscous
response of a fluid to a random stirring force. He showed how
simple diagrams could be used with combinatorics to generate
all the terms in an infinite series for the two-point
correlation function. He also showed that terms could be
classified by the topological properties of their
corresponding diagrams. In this way, he found that one class
of terms could be summed exactly and that another could be re-
expressed in terms of partially summed series, thus
introducing the idea of renormalization. In other words, the
exact correlation could be expressed as an expansion in terms
of itself and a renormalized response function (or
propagator). In a sense, this could be regarded as a general
solution of the problem, but obviously one that by itself does
not provide a tractable theory. In short, it is a formalism.

As an aside, I should just mention that Wyld’s paper was
evidently very much written for theoretical physicists. That
is no reason why any competent applied mathematician shouldn’t
follow it, but one suspects that few did. Also, the work has
been subject to a degree of criticism: the current version may
be found as the improved Wyld-Lee theory in #8 of the list of
My Recent Papers on this website. But this does not affect
anything I will say here and I will return to this topic in a
future blog.
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In contrast, Kraichnan began by introducing the infinitesimal
response function $\hat{G}$, which connected an infinitesimal
change in the stirring forces to an infinitesimal change in
the velocity field. He made this the basis of what he claimed
was an unconventional (superior?) perturbation theory, making
use of ideas like weak dependence, maximal randomness, and
direct interaction. Unfortunately these ideas did not attract
general agreement, and I suspect that he found the refereeing
process with JFM, and the subsequent experience of the
Marseille Conference (see the previous blog), rather bruising.
Apparently he said. "The optimism of British applied
mathematicians is unbounded.’ Then after a pause. From
below.’ I was told this by Sam Edwards when I was a
postgraduate student. Sam obviously appreciated the interplay
of wit and cynicism.

Now, in completing his theory, Kraichnan made the substitution
$\hat{G}= G \equiv \langle \hat{G} \rangle$, which is 1in
effect a mean-field approximation. So it is important to note
that, when the conventional perturbation formalism of Wyld 1is
truncated at second-order in the renormalized expansion, the
equations of Kraichnan’s DIA are recovered. This is important
because it suggests that this particular mean-field
approximation is in fact justified. However, we know that
Kraichnan came to the conclusion that his theory was wrong, at
least in terms of its asymptotic behaviour at high Reynolds
numbers: see the previous blog.

This has the immediate implication that Wyld’s formalism 1is
also wrong, when truncated at second order. Which is also true
of the later functional formalism of Martin, Siggia and Rose
[3]. Kraichnan came to the conclusion that his DIA approach
should be carried out in a mixed Eulerian-Lagrangian
coordinate system; and, if correct, that would presumably also
apply to the two formalisms. However, there is also the
question of whether or not it is appropriate to treat the
system response as one would in dynamical system theory. After



all, the stirring forces in a fluid, first have to create the
system, and only then do they maintain it against the
dissipative effects of viscosity. We will return to this
aspect in future blogs.

[1] R. H. Kraichnan. The structure of isotropic turbulence at
very high Reynolds numbers. J. Fluid Mech., 5:497-543, 1959.
[2] H. W. Wyld Jr. Formulation of the theory of turbulence in
an incompressible fluid. Ann. Phys, 14:143, 1961.

[3] P. C. Martin, E. D. Siggia, and H. A. Rose. Statistical
Dynamics of Classical Systems. Phys. Rev. A, 8(1):423-437,
1973.

Marseille (1961): a
paradoxical outcome.

Marseille (1961): a paradoxical outcome.

When I was first at Edinburgh, in the early 1970s, a number of
samizdat-like documents, of entirely mysterious provenance,
were being passed around. One that came my way, was a paper by
Lumley which contained some rather interesting ideas for
treating the problem of turbulent diffusion. I expect that it
is still in my filing system; but, with the Covid-19 lockdown,
I am cut off from my university office and unable to refresh
my memory. Later on I encountered the paper by Proudman which
criticised Kraichnan’s theory of turbulence — the Direct-
Interaction Approximation — and by that time I presumably had
heard about the meeting held in Marseille in 1961. Of course
my ignorance is not all that surprising, in that the meeting,
which was the source of these papers, took place five years
before I began my postgraduate research. In any case, I must
have known about it by the late 1980s, as these papers are
correctly referenced in my 1990 book on the physics of
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turbulence.

An interesting and informal account of this meeting is given
by Moffatt in his review [1], which is essentially an
appreciation of the life and work of G. K. Batchelor, and
accordingly the meeting is seen, as it were, through this
prism. Having told the story of how Batchelor discovered the
work of Kolmogorov, while searching through the literature of
turbulence in the library of the Cambridge Philosophical
Society; and how he had expanded the short and rather cryptic
papers of Kolmogorov into what was to become a seminal work on
the subject [2], Moffatt sees the Marseille meeting as a
‘watershed’ in the study of turbulence. In support of this, he
highlights two contributions to the meeting.

First, there is the report by Stewart of experimental
measurements of energy spectra carried out in the channel
between Vancouver Island and the mainland. This investigation
achieved values of the Taylor-Reynolds number up to about
3000, and several decades of power-law behaviour, which
appeared to support the Kolmogorov $-5/3% spectrum. This work
was published the following year [3].

Secondly, there was a lecture by Kolmogorov, also published in
the following year [4], in which he outlined a refinement
(sic) of his 1941 theory in response to a criticism by Landau.
His conclusion was that the power of $-5/3$% should be subject
to a small correction $\mu$; but he was unable to obtain a
value for $\mu$.

There is an element of contradiction here, but that could
possibly be resolved quite trivially if one were to find out
that the two agreed within experimental error. So that in
itself is not a paradox. The paradox that I have in mind
arises in a different way.

Moffatt discusses the fact that Batchelor essentially gave up
turbulence as his main research interest after this meeting.
His argument appears to be that Batchelor was already becoming



discouraged by the difficulties of the subject. And, given
that a major part of his own research had been the
interpretation and dissemination of the Kolmogorov (1941)
theory, he may have found that Kolmogorov’s lecture at this
meeting came as the last straw!

Another possibility, that Moffatt doesn’t mention, 1s that
Batcheleor may have found the new wave of theoretical physics
approaches, as initiated by Kraichnan, not only complicated
but also part of an alien culture, to the extent that this too
was discouraging. I have a personal note that I can add here.
I only met Batchelor once; in 1967 when he examined my
Master’s thesis. At one point he had some difficulty with the
units, where I was giving a quantum physics analogy, and I
pointed out that there would be a Planck’s constant involved,
but that I was working in units where Planck’s constant was
unity. At another stage he pointed out that he was, at the
risk of being accused of cynicism, no more optimistic about
these new quantum-inspired approaches, than about anything
else. And, that was with Sam Edwards, who had published a
theory of turbulence in JFM three years earlier, also in the
room! I am quite sure that forty (or more) years on, there
would be many in turbulence research who would eagerly say
that he had proved to be right. But, following one’s
prejudices, rather than engaging with a subject, 1is the
abnegation of scholarship. Sometimes the truth lies deep.

However, another major discouragement took place at this
meeting. Kraichnan was predicting an inertial-range spectrum
with an exponent of $-3/2%$. Even if the results of Grant et
al. [3] were compatible with a small correction to $5/3%, they
were certainly good enough to convincingly rule out
Kraichnan’s rival $3/2$%$ exponent. As a result, Kraichnan had
to look at his theory again, and over a period of several
years he became convinced that the problem was insoluble in
Eulerian coordinates, and that there was a need to change to a
mixed coordinate system which he called Lagrangian-History



coordinates. The result was an immensely complicated theory,
which not only had to be abridged in order to permit
computation, but also depended on the way in which the theory
was formulated. This has left a legacy of other workers who
employ a more conventional Lagrangian system.

This, then, 1is the paradox that I had in mind. The outcome of
the meeting, put in very broad brush terms, is that Batchelor
changed his mind because Kolmogorov (1941) was wrong and
Kraichnan changed his mind because it was correct. It cannot
be said that progress in turbulence is ever smooth.
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Which Navier-Stokes equation do you use?

In the first half of 1999, a major turbulence programme was
held at the Isaac Newton Institute in Cambridge. On those days
when there were no lectures or seminars during the morning, a
large group of us used to meet for coffee and discussions. In
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my view these discussions were easily the most enjoyable
aspect of the programme. On one particular morning, as a
prelude to making some point, I said that I was probably
unusual in that I have taught the derivation of the Navier-
Stokes equation (NSE) as continuum mechanics to engineering
students and by statistical mechanics to physicists and
mathematicians. The general reaction was that that I was not
merely unusual, but surely unique! I gathered, from comments
made, that everyone present saw the NSE as part of continuum
mechanics.

Of course the two forms of NSE are apparently identical,
otherwise one could not refer to both as the Navier-Stokes
equation. Nevertheless, when one comes to consider the
infinite Reynolds number limit, it 1s necessary to become
rather more particular. We can start doing this by stating the
two forms, as follows.

First, the continuum-mechanical NSE is exact for a continuous
fluid which shows Newtonian behaviour under all circumstances
of interest.

Secondly, the statistical-mechanical NSE is the first
approximation to the exact statistical mechanical equations of
motion. So in principal it should be followed by a statement
to the effect that there are higher-order terms.

Now strictly, if we want to consider cases where the continuum
approximation breaks down, we should be using the second of
these forms. Batchelor argued that in the limit of zero
viscosity (at constant dissipation rate) the dissipation would
be concentrated at infinity in wavenumber space. Edwards [1]
went further and represented this dissipation by a delta-
function at $k=\infty$ and matched it with a delta-function
input of energy at $k=0%$. In this way he could obtain an
infinitely long inertial range and assume that the $-5/3$%
spectrum applied everywhere, as a test of his closure
approximation.



The Edwards procedure is valid, because he was applying it to
a closure of the (in effect) continuum-mechanical NSE, as
indeed is everyone else who discusses behaviour at large
Reynolds numbers; or, for that matter, statistical closures.
But the question of the validity of this model arises when
people consider the breakdown of the NSE. This actually
requires some consideration of the basic physics, which in
this case means statistical mechanics; and, essentially this
boils down to the following: The general requirement for the
continuum limit to be valid is that the smallest length-scale
of the fluid motion should be much larger than the mean free
path of the fluid’s molecules.

The only example of this being looked at quantitatively, that
I know of, may be found in Section 1.3 of the book by Leslie
[2]. He considered flow in a pipe at a Reynolds number of
$1076%$, with a pipe diameter of $10mm =10"{-2}m$, which he
described as an extreme case. In Section 2.8 of his book, he
calculates the minimum eddy size to be greater than $107{-4}mm
=10"{-7}m$. He notes that for a liquid the mean free path is
of the order of the atomic dimensions and thus about
$10"{-10}m$ and hence the use of a continuum form is very well
justified. He further comments: ‘It [the continuum limit] is
also satisfied, although not by such a comfortable margin, by
any gas dense enough to produce a Reynolds number of $1076$ in
a passage only $10mm$ in diameter.’

I think that it would be a good idea if those who discuss
cases where a theory based on the Navier-Stoke equation 1is
supposed to break down actually put in some numbers to
indicate where their revised theory would be applicable and
the NSE wouldn’t. Or perhaps, it might be salutary to consider
in detail the variation of significant quantities with
increasing Reynolds number and identify the smooth development
of asymptotic behaviour. I will return to this point in future
posts.

Anyone who would like an introductory discussion of the



derivation of macroscopic balance equations from statistical
mechanics should consult Section 7.6 of my book Study notes
for statistical physics, which may be downloaded free of
charge from Bookboon.com.
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Turbulence as a quantum field theory: 2

In the previous post, we specified the problem of stationary,
isotropic turbulence, and discussed the nature of turbulence
phenomenology, insofar as it is relevant to taking our first
steps in a field-theoretic approach. Now we will extend that
specification in order to allow us to concentrate on
renormalization group or RG.

RG originated in quantum field theory in the 1950s, but 1is
best known for its successes in critical phenomena in the
1970s, along with the creation of the new subject of
statistical field theory. Essentially it began as a method of
exploiting scale invariance, and ended up as a method of
detecting it, and also establishing the conditions under which
it would hold. It is most easily understood in the theory of
ferromagnetism, where we can envisage a model consisting of
lots of little atomic magnets on a lattice. These atomic
magnets (or lattice spins) interact with each other and, if we
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call the interaction energy for any pair $J$, this energy
appears in the partition function as $J/k B T$, where $k B$ 1is
the Boltzmann constant, and $T$ is the absolute temperature.
This quantity is the coupling constant.

Now RG consists of coarse-graining our microscopic
description, and then re-scaling it, to see it we can get back
to where we started. If so, that would be a fixed point. In
practice, we might expect to carry out this transformation a
number of times, in order to reach such a fixed point. So in
effect we are progressively reducing the number of degrees of
freedom. This involves some sort of partial average at each
step, in contrast to a full ensemble average, which gets you
down from lots of degrees of freedom to just a few numbers
being needed to describe a system.

Actually, merely by waving our hands about, we can deduce
something about the fixed points of our lattice model of a
ferromagnet. If we consider very high temperatures, then the
coupling strength will be reduced to zero. The lattice spins
will have a Gaussian probability distribution. We can envisage
that this will be a fixed point, as no amount of coarse-
graining will change it from a purely random distribution. At
the other extreme, as the temperature tends to zero, the
coupling tends to infinity and there can be no random
behaviour: the spins will all line up. Once again, perfect
order cannot be changed by coarse graining, and this also is a
fixed point. What happens in between these extremes 1is
interesting. As the temperature is reduced from some very
large value, clumps of aligned spins will occur as
fluctuations. The size of these fluctuations is characterised
by the correlation length. As the temperature approaches some
critical value $T c$ from above, the correlation length will
tend to infinity. When this occurs, it is no longer possible
to coarse-grain away the ordering, as it exists on all scales.
This fixed point is the critical point of the lattice.

So, RG applied to the model identifies the high- and low-



temperature fixed points, which are trivial; and the critical
fixed point which corresponds to the onset of ferromagnetism.
This is known as real space RG and I have given a fuller
account (with pictures!) elsewhere [1]. For completeness, I
should mention that the momentum-space analytical treatment
involves Gaussian perturbation theory in order to evaluate
parameters associated with the critical point. Also, the
temperature in this context is known as a control parameter.
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In turbulence, the degrees of freedom are the independently
excited Fourier modes. The coupling parameter for each mode
can be identified with Batchelor’s Reynolds number (see my
earlier post on 23/04/20) which takes the form
$R(k)=[E(k)]I"{1/2}/\nu k~{1/2}$. Using the schematic energy
spectrum, as given in the preceding post, we can identify the
trivial fixed points where the coupling falls to zero. This 1is
because the spectrum is known to go to zero at least as $k™4%
as $k\rightarrow 0% and to zero exponentially as $k\rightarrow
\infty$. By analogy with quantum field theory, we refer to
these points as being asymptotically free in the infra-red and
the ultra-violet, respectively. In order to compare with
magnetism, we can argue that the $k=0%$ fixed point 1is
analogous with the high-temperature, where the low-$k$ motion



is random (Gaussian) due to the stirring, whereas at large
$k$, the motion is damped by viscosity and is analogous to the
low-temperature fixed point. In the figure we identify another
possible, but non-trivial, fixed point where the inertial
range is represented by the Kolmogorov $k™~{-5/3}$% spectrum. A
power law, being scale-free, is likely to be associated with a
fixed point of the RG transformations.

In order to carry out calculations, we seek to eliminate modes
progressively in bands, first $k 1\leq k\leq k 0%, then $k 2
\leq k \leq k 1%, and so on. At the first stage, the effect of
the missing modes results in an increase to the viscosity
$\nu 0 \rightarrow \nu 1 = \nu 0 + \delta \nu 0%$. We then
rescale on the increased viscosity, and repeat the process.
Note that we rename the molecular viscosity $\nu = \nu 0% for
this purpose. Also note that it can be a little counter-
intuitive associating zero with the maximum value of $k$, but
we want an increasing index as we reduce $k$, leading on to a
recurrence relationship which may reach a fixed point.

In the theory of magnetism, the lattice spacing %$a$ is used to
define the maximum wavenumber, thus $k {max} = 2\pi/a$. In
turbulence, sometimes the Kolmogorov wavenumber 1is used for
the maximum, but this is likely to be incorrect by at least an
order of magnitude. A better definition has been given [2] in
terms of the dissipation integral, thus: $\varepsilon =
\int O0™\infty 2\nu 0 k™2 E(k) dk \simeq \int 0"{k {max}}2\nu 0O
k*2 E(k) dk$.

I shall highlight two calculations here. Forster et al [3]
carried out an RG calculation by restricting the wavenumbers
considered to a region near the origin. This was very much a
Gaussian perturbation theory of the type used in the study of
critical phenomena. They did not refer to this as turbulence,
and instead considered it as the large scale asymptotic
behaviour of randomly stirred fluid motion.

Later, McComb and Watt [4], introduced a form of conditional



average which allowed the RG transformation to be formulated
as an approximation, valid even at large wavenumbers. They
were able to find a non-trivial fixed point which corresponded
to the onset of the inertial (power-law) range and gave a good
value of the Kolmogorov spectral constant. This work has been
carried on and refined but is very largely ignored. 1In
contrast, Forster et al seem to have established a new
paradigm of Gaussian fluid motion which permits the
application of much field theoretic RG which relies on the
simplifications of the paradigm. There is, however, one
difference. Nowadays people publishing in this field describe
it as turbulence! The most up-to-date treatment of the
conditional averaging method will be found in [5].
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