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In the first half of 1999, a major turbulence programme was
held at the Isaac Newton Institute in Cambridge. On those days
when there were no lectures or seminars during the morning, a
large group of us used to meet for coffee and discussions. In
my  view  these  discussions  were  easily  the  most  enjoyable
aspect  of  the  programme.  On  one  particular  morning,  as  a
prelude to making some point, I said that I was probably
unusual in that I have taught the derivation of the Navier-
Stokes equation (NSE) as continuum mechanics to engineering
students  and  by  statistical  mechanics  to  physicists  and
mathematicians. The general reaction was that that I was not
merely unusual, but surely unique! I gathered, from comments
made, that everyone present saw the NSE as part of continuum
mechanics.

Of  course  the  two  forms  of  NSE  are  apparently  identical,
otherwise one could not refer to both as the Navier-Stokes
equation.  Nevertheless,  when  one  comes  to  consider  the
infinite Reynolds number limit, it is necessary to become
rather more particular. We can start doing this by stating the
two forms, as follows.

First, the continuum-mechanical NSE is exact for a continuous
fluid which shows Newtonian behaviour under all circumstances
of interest.

Secondly,  the  statistical-mechanical  NSE  is  the  first
approximation to the exact statistical mechanical equations of
motion. So in principal it should be followed by a statement
to the effect that there are higher-order terms.

Now strictly, if we want to consider cases where the continuum

https://blogs.ed.ac.uk/physics-of-turbulence/2020/05/14/which-navier-stokes-equation-do-you-use/
https://blogs.ed.ac.uk/physics-of-turbulence/2020/05/14/which-navier-stokes-equation-do-you-use/


approximation breaks down, we should be using the second of
these  forms.  Batchelor  argued  that  in  the  limit  of  zero
viscosity (at constant dissipation rate) the dissipation would
be concentrated at infinity in wavenumber space. Edwards [1]
went further and represented this dissipation by a delta-
function at $k=\infty$ and matched it with a delta-function
input of energy at $k=0$. In this way he could obtain an
infinitely long inertial range and assume that the $-5/3$
spectrum  applied  everywhere,  as  a  test  of  his  closure
approximation.

The Edwards procedure is valid, because he was applying it to
a closure of the (in effect) continuum-mechanical NSE, as
indeed  is  everyone  else  who  discusses  behaviour  at  large
Reynolds numbers; or, for that matter, statistical closures.
But the question of the validity of this model arises when
people  consider  the  breakdown  of  the  NSE.  This  actually
requires some consideration of the basic physics, which in
this case means statistical mechanics; and, essentially this
boils down to the following: The general requirement for the
continuum limit to be valid is that the smallest length-scale
of the fluid motion should be much larger than the mean free
path of the fluid’s molecules.

The only example of this being looked at quantitatively, that
I know of, may be found in Section 1.3 of the book by Leslie
[2]. He considered flow in a pipe at a Reynolds number of
$10^6$, with a pipe diameter of $10mm =10^{-2}m$, which he
described as an extreme case. In Section 2.8 of his book, he
calculates the minimum eddy size to be greater than $10^{-4}mm
=10^{-7}m$. He notes that for a liquid the mean free path is
of  the  order  of  the  atomic  dimensions  and  thus  about
$10^{-10}m$ and hence the use of a continuum form is very well
justified. He further comments: ‘It [the continuum limit] is
also satisfied, although not by such a comfortable margin, by
any gas dense enough to produce a Reynolds number of $10^6$ in
a passage only $10mm$ in diameter.’



I think that it would be a good idea if those who discuss
cases where a theory based on the Navier-Stoke equation is
supposed  to  break  down  actually  put  in  some  numbers  to
indicate where their revised theory would be applicable and
the NSE wouldn’t. Or perhaps, it might be salutary to consider
in  detail  the  variation  of  significant  quantities  with
increasing Reynolds number and identify the smooth development
of asymptotic behaviour. I will return to this point in future
posts.

Anyone  who  would  like  an  introductory  discussion  of  the
derivation of macroscopic balance equations from statistical
mechanics should consult Section 7.6 of my book Study notes
for  statistical  physics,  which  may  be  downloaded  free  of
charge from Bookboon.com.
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