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In the previous post, we specified the problem of stationary,
isotropic turbulence, and discussed the nature of turbulence
phenomenology, insofar as it is relevant to taking our first
steps in a field-theoretic approach. Now we will extend that
specification  in  order  to  allow  us  to  concentrate  on
renormalization  group  or  RG.

RG originated in quantum field theory in the 1950s, but is
best known for its successes in critical phenomena in the
1970s,  along  with  the  creation  of  the  new  subject  of
statistical field theory. Essentially it began as a method of
exploiting  scale  invariance,  and  ended  up  as  a  method  of
detecting it, and also establishing the conditions under which
it would hold. It is most easily understood in the theory of
ferromagnetism, where we can envisage a model consisting of
lots  of  little  atomic  magnets  on  a  lattice.  These  atomic
magnets (or lattice spins) interact with each other and, if we
call the interaction energy for any pair $J$, this energy
appears in the partition function as $J/k_B T$, where $k_B$ is
the Boltzmann constant, and $T$ is the absolute temperature.
This quantity is the coupling constant.

Now  RG  consists  of  coarse-graining  our  microscopic
description, and then re-scaling it, to see it we can get back
to where we started. If so, that would be a fixed point. In
practice, we might expect to carry out this transformation a
number of times, in order to reach such a fixed point. So in
effect we are progressively reducing the number of degrees of
freedom. This involves some sort of partial average at each
step, in contrast to a full ensemble average, which gets you
down from lots of degrees of freedom to just a few numbers
being needed to describe a system.
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Actually, merely by waving our hands about, we can deduce
something about the fixed points of our lattice model of a
ferromagnet. If we consider very high temperatures, then the
coupling strength will be reduced to zero. The lattice spins
will have a Gaussian probability distribution. We can envisage
that this will be a fixed point, as no amount of coarse-
graining will change it from a purely random distribution. At
the  other  extreme,  as  the  temperature  tends  to  zero,  the
coupling  tends  to  infinity  and  there  can  be  no  random
behaviour: the spins will all line up. Once again, perfect
order cannot be changed by coarse graining, and this also is a
fixed  point.  What  happens  in  between  these  extremes  is
interesting. As the temperature is reduced from some very
large  value,  clumps  of  aligned  spins  will  occur  as
fluctuations. The size of these fluctuations is characterised
by the correlation length. As the temperature approaches some
critical value $T_c$ from above, the correlation length will
tend to infinity. When this occurs, it is no longer possible
to coarse-grain away the ordering, as it exists on all scales.
This fixed point is the critical point of the lattice.

So, RG applied to the model identifies the high- and low-
temperature fixed points, which are trivial; and the critical
fixed point which corresponds to the onset of ferromagnetism.
This is known as real space RG and I have given a fuller
account (with pictures!) elsewhere [1]. For completeness, I
should mention that the momentum-space analytical treatment
involves Gaussian perturbation theory in order to evaluate
parameters  associated  with  the  critical  point.  Also,  the
temperature in this context is known as a control parameter.



Variation  of  the  coupling  strength  with
wavenumber in isotropic turbulence.

In turbulence, the degrees of freedom are the independently
excited Fourier modes. The coupling parameter for each mode
can be identified with Batchelor’s Reynolds number (see my
earlier  post  on  23/04/20)  which  takes  the  form
$R(k)=[E(k)]^{1/2}/\nu  k^{1/2}$.  Using  the  schematic  energy
spectrum, as given in the preceding post, we can identify the
trivial fixed points where the coupling falls to zero. This is
because the spectrum is known to go to zero at least as $k^4$
as $k\rightarrow 0$ and to zero exponentially as $k\rightarrow
\infty$. By analogy with quantum field theory, we refer to
these points as being asymptotically free in the infra-red and
the  ultra-violet,  respectively.  In  order  to  compare  with
magnetism,  we  can  argue  that  the  $k=0$  fixed  point  is
analogous with the high-temperature, where the low-$k$ motion
is random (Gaussian) due to the stirring, whereas at large
$k$, the motion is damped by viscosity and is analogous to the
low-temperature fixed point. In the figure we identify another
possible,  but  non-trivial,  fixed  point  where  the  inertial
range is represented by the Kolmogorov $k^{-5/3}$ spectrum. A
power law, being scale-free, is likely to be associated with a
fixed point of the RG transformations.

In order to carry out calculations, we seek to eliminate modes



progressively in bands, first $k_1\leq k\leq k_0$, then $k_2
\leq k \leq k_1$, and so on. At the first stage, the effect of
the missing modes results in an increase to the viscosity
$\nu_0 \rightarrow \nu_1 = \nu_0 + \delta \nu_0$. We then
rescale on the increased viscosity, and repeat the process.
Note that we rename the molecular viscosity $\nu = \nu_0$ for
this purpose. Also note that it can be a little counter-
intuitive associating zero with the maximum value of $k$, but
we want an increasing index as we reduce $k$, leading on to a
recurrence relationship which may reach a fixed point.

In the theory of magnetism, the lattice spacing $a$ is used to
define the maximum wavenumber, thus $k_{max} = 2\pi/a$. In
turbulence, sometimes the Kolmogorov wavenumber is used for
the maximum, but this is likely to be incorrect by at least an
order of magnitude. A better definition has been given [2] in
terms  of  the  dissipation  integral,  thus:  $\varepsilon  =
\int_0^\infty 2\nu_0 k^2 E(k) dk \simeq \int_0^{k_{max}}2\nu_0
k^2 E(k) dk$.

I shall highlight two calculations here. Forster et al [3]
carried out an RG calculation by restricting the wavenumbers
considered to a region near the origin. This was very much a
Gaussian perturbation theory of the type used in the study of
critical phenomena. They did not refer to this as turbulence,
and  instead  considered  it  as  the  large  scale  asymptotic
behaviour of randomly stirred fluid motion.

Later, McComb and Watt [4], introduced a form of conditional
average which allowed the RG transformation to be formulated
as an approximation, valid even at large wavenumbers. They
were able to find a non-trivial fixed point which corresponded
to the onset of the inertial (power-law) range and gave a good
value of the Kolmogorov spectral constant. This work has been
carried  on  and  refined  but  is  very  largely  ignored.  In
contrast,  Forster  et  al  seem  to  have  established  a  new
paradigm  of  Gaussian  fluid  motion  which  permits  the
application of much field theoretic RG which relies on the



simplifications  of  the  paradigm.  There  is,  however,  one
difference. Nowadays people publishing in this field describe
it  as  turbulence!  The  most  up-to-date  treatment  of  the
conditional averaging method will be found in [5].
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