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In  the  late  1940s,  the  remarkable  success  of  arbitrary
renormalization  procedures  in  quantum  electrodynamics  in
giving an accurate picture of the interaction between matter
and the electromagnetic field, led on to the development of
quantum field theory. The basis of the method was perturbation
theory, which is essentially a way of solving an equation by
expanding  it  around  a  similar,  but  soluble,  equation  and
obtaining the coefficients in the expansion iteratively.

As a result of these successes, perturbation theory became
part of the education of every physicist. Indeed, it is not
too much to say that it is part of our DNA. Yet, a few years
ago,  when  I  looked  at  the  website  of  an  applied  maths
department,  they  had  a  lengthy  explanation  of  what
perturbation  theory  was,  as  they  were  using  it  on  some
problem.  One  simply  couldn’t  imagine  that,  on  a  physics
department  website,  and  it  illustrates  the  cultural  voids
between different disciplines in the turbulence community. For
instance, I used to hear/read comments to the effect that
‘isotropic  turbulence  had  been  studied  for  its  potential
application to shear flows, but this proved not to be the case
and now it was of no further interest.’ From a physicist’s
point of view, the reason for studying isotropic turbulence is
the  same  as  the  motivation  for  being  the  first  to  climb
Everest. Because it is there! But, interestingly, the study of
isotropic turbulence has increased in recent years, driven by
the growth of direct numerical simulation of the equations of
motion as a discipline in its own right.

However,  back  to  the  sixties.  The  idea  of  applying  these
methods to turbulence caught on, and for a while things seem
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to have been quite exciting. In particular, there were the
pioneering theories of Kraichnan, Edwards and Herring. There
was also, the formalism of Wyld, which was the most like
quantum field theory. At this point, I know from long and
bitter experience that there will be wiseacres muttering ‘Wyld
was wrong’. They won’t know what exactly is wrong, but they
will be quoting a well-known later formalism by Martin, Siggia
and Rose. In fact it has recently been shown that the two
formalisms are compatible, once some simple procedural changes
have been made to Wyld’s approach [1].

We will return to Wyld in a later post (and also to the
distinction between formalisms and theories). Here we want to
take a critical look at the underlying physics of applying the
methods of quantum field theory to fluid turbulence. It is one
thing  to  apply  the  iterative-perturbative  approach  to  the
Navier-Stokes  equations  (NSE),  and  another  to  justify  the
application  of  specific  renormalization  procedures  to  a
macroscopic phenomenon in classical physics. So, let’s begin
by formulating the problem of turbulence for this purpose, in
order to see whether the analogy is justified.

We consider a cubical box of side $L$, occupied by a fluid
which is stirred by random forces with a multivariate-normal
distribution and with instantaneous correlation in time. This
condition ensures that any correlations which arise in the
velocity field are due to the NSE. It also is known as the
white noise condition and allows us to work out the rate at
which  the  forces  do  work  on  the  fluid  in  terms  of  the
autocorrelation of the random forces, which is part of the
specification of the problem. (Occasionally one sees it stated
that the delta-function autocorrelation in time is needed for
Galilean invariance. I must say that I would like to see a
reasoned justification for that statement.)

By expanding the velocity field (and pressure) in Fourier
series, we can study the NSE in wavenumber $k$ space. It is
usual  nowadays  to  proceed  immediately  to  the  limit  $L



\rightarrow  \infty$  and  make  use  of  the  Fourier  integral
representation. It is important to note, that this is a limit.
It does not imply that there is a quantity $\epsilon = 1/L =
0$. It does however imply that all our procedures and results
must be independent of $L$. Then the problem may be seen as
one of strong nonlinear coupling, due to the form of the
nonlinear term in wavenumber space.

Strong nonlinear coupling? Well that’s the conventional view
and it is certainly not wrong. But let’s not be too glib about
this. It is well known, and probably has been since at latest
the early part of the last century, that making variables non-
dimensionless on specific length- and velocity-scales results
in a Reynolds number appearing in front of the nonlinear term
as a prefactor. Expressing, this in terms of quantum field
theory, the Reynolds number plays the part of the coupling
constant. In quantum-electrodynamics, the coupling constant is
the fine-structure constant with a value of about $1/137$, and
thus provides a small parameter for perturbation expansion.
While the resulting series is not strictly convergent, it does
give answers of astonishing accuracy. It is equally well known
that  attempting  perturbation  theory  in  fluid  dynamics  is
unwise  for  anything  other  than  creeping  flow,  where  the
Reynolds number is small. So applying perturbation theory to
turbulence looks distinctly unpromising.

There is also the basic phenomenology of turbulence which we
must take into account. The stirring motion of the forces will
produce  fluid  velocities  with  normal  (or  Gaussian)
distributions. Then the effect of the nonlinear coupling is to
generate modes with larger values of wavenumber than those
initially stirred. This is accompanied by the transfer of
energy from small wavenumbers to large, and if left to carry
on would lead to equipartition for any finite set of modes,
albeit  with  the  total  energy  increasing  with  time.  This
assumes  the  imposition  of  a  cut-off  wavenumber,  but  in
practice the action of viscosity is symmetry-breaking, and the



kinetic energy of turbulent motion leaves the system as heat.
The situation is as shown in the sketch which, despite our
restriction to isotropic turbulence in a box, is actually
quite illustrative of what goes on in many turbulent flows.

Sketch of the energy spectrum of
isotropic turbulence at moderate
Reynolds number.

Various characteristic scales can be defined, but the most
important  is  the  Kolmogorov  dissipation  wavenumber,  thus:
$k_d=(\varepsilon /\nu_0^3)^{1/4}$, which gives the order of
magnitude of the wavenumber at which the viscous effects begin
to dominate. For the application of renormalized perturbation
theory  (which  we  will  discuss  in  a  later  post),  this
phenomenology is important for assessment purposes. However,
when we look at the later introduction of renormalization
group theory, we have to consider this picture in rather more
detail. We will do that in the next post.

[1] A. Berera, M. Salewski, and W. D. McComb. Eulerian Field-
Theoretic Closure Formalisms for Fluid Turbulence. Phys. Rev.
E, 87:013007-1-25, 2013.



Is  there  an  alternative
infinite  Reynolds  number
limit?
Is there an alternative infinite Reynolds number limit?

I first became conscious of the term dissipation anomaly in
January 2006, at a summer school, where the lecturer preceding
me laid heavy emphasis on the term, drawing an analogy with
the concept of anomaly in quantum field theory, as he did so.
It seemed that this had become a popular name for the fact
that turbulence possesses a finite rate of dissipation in the
limit  as  the  viscosity  tends  to  zero.  I  found  the  term
puzzling, as this behaviour seemed perfectly natural to me. At
the time it occurred to me that it probably depended on how
you had first met turbulence, whether the use of this term
seemed natural or not. In my case, I had met turbulence in the
form of shear flows, long before I had been introduced to the
study of isotropic turbulence in my PhD project.

Back in the real world, the experiments of Osborne Reynolds
were conducted on pipe flow in the late 1890s, and this line
of work was continued in the 1930s and 1950s by (for example)
Nikuradse  and  Laufer  [1].  This  led  to  a  picture  where
turbulence was seen as possessing its own resistance to flow.
The  disorderly  eddying  motions  were  perceived  to  have  a
randomizing effect analogous to, but much stronger than, the
effects of the fluid’s molecular viscosity. This in turn led
to the useful but limited concept of the eddy viscosity. As
the Reynolds number was increased, the eddy viscosity became
dominant, typically being two orders of magnitude greater than
the fluid viscosity.
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In principle, there are three alternative ways of varying the
Reynolds number in pipe flow, but in practice it is just a
matter of turning up the pump speed. Certainly no one would
try to do it by decreasing the viscosity or increasing the
pipe diameter. In isotropic turbulence, the situation is not
so straightforward, as we use forms of the Reynolds number
which depend on internal length and velocity scales. Indeed
the only unambiguous characteristic which is known initially
is the fluid viscosity.

An ingenious way round this was given by Batchelor (see pp 106
–  107,  in  [2]),  who  introduced  a  Reynolds  number  for  an
individual degree for freedom (i.e. wave-number mode) as $R(k)
=  [E(k)]^{1/2}/\nu  k^{1/2}$,  in  terms  of  the  wavenumber
spectrum, the viscosity and the wave-number of that particular
degree of freedom. He argued that the effect of decreasing the
viscosity would be to increase the dominance of the inertial
forces on that particular mode, so that the region of wave-
number space which is significantly affected by viscous forces
moves out towards $k=\infty$. He concluded: `In the limit of
infinite Reynolds number the sink of energy is displaced to
infinity and the influence of viscous forces is negligible for
wave-numbers of finite magnitude.’ A similar conclusion was
reached by Edwards from a consideration of the Kolmogorov
dissipation  wave-number  [1],  who  showed  that  the  sink  of
energy  at  infinity  could  be  represented  by  a  Dirac  delta
function.

It is perhaps also worth mentioning that the use of this local
(in wave-number) Reynolds number provides a strength parameter
for the consideration of isotropic turbulence as an analogous
quantum field theory [3].
Evidently the conclusion that the infinite Reynolds limit in
isotropic  turbulence  corresponds  to  a  sink  of  energy  at
infinity  in  $k$-space  seems  to  be  well  justified.
Nevertheless,  this  use  of  the  value  infinity  in  the
mathematical sense is only justified in theoretical continuum



mechanics. In reality it cannot correspond to zero viscosity.
It can be shown quite easily from the phenomenology of the
subject  that  the  infinite  Reynolds  number  behaviour  of
isotropic turbulence can be demonstrated asymptotically to any
required accuracy without the need for zero viscosity. We
shall return to this in a later post.

1.  W.  D.  McComb.  The  Physics  of  Fluid  Turbulence.  Oxford
University Press, 1990.
2  G.  K.  Batchelor.  The  theory  of  homogeneous  turbulence.
Cambridge University Press, Cambridge, 1st edition, 1953.
3.  W.  David  McComb.  Homogeneous,  Isotropic  Turbulence:
Phenomenology,  Renormalization  and  Statistical  Closures.
Oxford University Press, 2014.

What  relevance  has
theoretical  physics  to
turbulence theory?

What  relevance  has  theoretical
physics to turbulence theory?
The question is of course rhetorical, as I intend to answer
it. But I have to pause on the thought that it is also
unsatisfactory in some respects. So why ask it then? Well my
reply to that is that various turbulence researchers have over
the years in effect answered it for me. Their answer would be
none  at  all!  In  fact,  in  the  case  of  various  anonymous
referees, they have often displayed a marked hostility to the
idea of theoretical physicists being involved in turbulence
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research. But the reason why I find it unsatisfactory is that
it seems to assume that turbulence theory is not part of
theoretical physics, whereas I think it is; or, rather, it
should be. So let’s begin by examining that question.

As is well known, the fundamental problem of turbulence is the
statistical closure problem that is posed by the hierarchy of
moments of the velocity field. Well, molecular physics has the
same problem when the molecules interact with each other. This
takes  the  form  of  the  BBGKY  hierarchy,  although  this  is
expressed in terms of the reduced probability distribution
functions. If we consider the simpler problem, where molecules
are  non-interacting  hard  spheres,  then  we  have  classical
statistical physics. In these circumstances we can obtain the
energy of the system simply by adding up all the individual
energies.  The  partition  function  of  the  system  then
factorizes, and we can obtain the system free energy quite
trivially. However, if the individual molecules are coupled
together by an interaction potential, then this factorization
is no longer possible as each molecule is coupled to every
other molecule in the system. So it is for turbulence, if we
work in the Fourier wavenumber representation, the modes of
the velocity field are coupled together by the nonlinear term
in the velocity field, thus posing an example of what in
physics is called the many-body problem.

One could go on with other examples in microscopic physics,
for  example  the  theory  of  magnetism  which  involves  the
coupling together of all spins on lattice sites, but it really
boils down to the fact that the bedrock problem of theoretical
physics is that of strong-coupling. And turbulence formulated
in $k$-space comes into that category. The only difference is,
that turbulence is mainly studied by engineers and applied
scientists, while theorists mostly prefer to study what they
see as more fundamental problems, even if these studies become
ever more arid for lack of genuine inspiration or creativity.
But as a matter of taxonomy, not opinion, turbulence should



belong to physics as an example of the many-body problem.

Now let’s turn to our actual question. We can begin by noting
that we are talking about insoluble problems. That is, there
is no general method of obtaining an exact solution. We have
to consider approximate methods. First, there is perturbation
theory, which relies on (and is limited by) the ability to
perform  Gaussian  functional  integrals.  Secondly,  there  is
self-consistent  field  theory.  Both  of  these  rely,  either
directly or indirectly, on the concept of renormalization. In
molecular  physics,  this  involves  adding  some  of  the
interaction energy to the bare particle, in order to create a
dressed particle, also known as a quasi-particle. Such quasi-
particles do not interact with each other and so the partition
function can be evaluated by factorization, just as in the
ideal-gas case. In the case of turbulence, it is probably
quite widely recognized nowadays that an effective viscosity
may be interpreted as a renormalization of the fluid kinematic
viscosity.  However,  it  should  be  borne  in  mind  that  the
stirring forces and the interaction strength may also require
renormalization.

There is no inherent reason why the subject of statistical
turbulence theory should be mysterious and I intend to post
short discussions of various aspects. Not so much maths, as
`good versus bad’ or `justified versus unjustified’; plus tips
on how to use some common sense reasoning to cut through the
intimidatingly  complicated  mathematics  and  (in  some  cases
self-important  pomposity)  of  some  theories  which  are  not
really new turbulence theories but merely text-book material
from  quantum  field  theory  in  which  variables  have  been
relabelled, but the essential difficulties of extending to
turbulence have not been tackled.



The Kolmogorov `5/3’ spectrum
and why it is important

The Kolmogorov `5/3’ spectrum and
why it is important
An intriguing aspect of the Kolmogorov inertial range spectrum
is that it was not actually derived by Kolmogorov. This fact
was unknown to me when, as a new postgraduate student, I first
encountered the `5/3’ spectrum in 1966. At that time, all work
on the statistical theory of turbulence was in spectral or
wavenumber ($k$) space , and the Kolmogorov form was seen as
playing  an  important  part  in  deciding  between  alternative
theoretical approaches.

As is well known nowadays, in 1941 Kolmogorov derived power-
law forms for the second- and third-order structure functions
in $r$ space. In the same year, it was Obukhov [1] who worked
in $k$ space, introducing the energy flux through wavenumber
as  the  spectral  realization  of  the  Richardson-Kolmogorov
cascade, and making the all-important identification of the
scale-invariance of the energy flux as corresponding to the
Kolmogorov picture for real space. It is usual nowadays to
denote this quantity by $\Pi(k)$, and in this context scale-
invariance means that it becomes a constant, independent of
$k$.  For  stationary  turbulence  that  constant  is  the
dissipation rate. Obukhov did actually produce the `5/3’ law,
but this involved additional hypotheses about the form of an
effective viscosity, so it was left to Onsager in 1945 [2] to
combine simple dimensional analysis with the assumption of
scale-invariance of the flux to produce a spectral form on
equal terms with Kolmogorov’s `2/3’ law for $S_2(r)$. This
work was discussed (and in effect) disseminated by Batchelor
in 1947 [3], and later in his well-known monograph. Curiously
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enough, in his book, Batchelor only discussed the spectral
picture, having discussed only the real-space picture in [3].
This is something that we shall return to in later posts. But
it seems that the effect was to establish the dominance of the
spectral picture for many years.

In the early sixties, there was considerable excitement about
the new statistical theories of turbulence, but when Grant,
Stewart and Moilliet published their experimental results for
spectra, which extended over many decades of wavenumber, it
became clear beyond doubt that the Kolmogorov inertial-range
form was valid and that the theories of Kraichnan and Edwards
were not quite correct. We will write about this separately in
other posts, but for me in 1966 the challenge was to produce
an  amended  form  of  the  Edwards  theory  which  would  be
compatible with the `5/3’ spectrum. This, in other words, was
a restatement of the turbulence closure problem. It is one
that I have worked on ever since.

This is not an easy problem and progress has been slow. But
there has been progress, culminating in McComb & Yoffe (2015):
see #3 of my recent publications. However, over the years,
beginning  in  the  late  1970s,  this  work  has  increasingly
received  referee  reports  which  are  hostile  to  the  very
activity and which assert that the basic problem for closures
is not to obtain $k^{-5/3}$ but rather to obtain a value for
$\mu$, where the exponent should be $-5/3 + \mu$, due to
intermittency  corrections.  Unfortunately  for  this  point  of
view,  the  so-called  intermittency  correction  $\mu$  comes
attached to a factor $L$, representing the physical size of
the system. This means that the limit $L \rightarrow \infty$
does not exist, which is something of a snag for the modified
Kolmogorov theory.

We shall enlarge on this elsewhere. For the moment it is
interesting  to  note  that  the  enthusiasm  for  intermittency
corrections arose from the study of structure functions and in
particular their behaviour with increasing order. This became



a very popular field of research throughout the 1980s/90s and
threatened to establish a sort of standard model, from which
no one was permitted to dissent. Fortunately, there has been a
fight back over the last decade or two, and the importance of
finite  Reynolds  number  effects  (or  FRN)  is  becoming
established. In particular, the group consisting of Antonia
and co-workers has emphasised consistently (and in my view
correctly) that the Kolmogorov result $S_3 \sim (4/5)r$ (which
the Intermittentists regard as exact) is only correct in the
limit  of  infinite  Reynolds  numbers.  At  finite  viscosities
there  must  be  a  correction,  however  small.  A  similar
conclusion has been reached for the second-order structure
function  by  McComb  et  al  (2014),  who  used  a  method  for
reducing systematic errors to show that this exponent too
tended  to  the  canonical  value  in  the  limit  of  infinite
Reynolds numbers. These facts have severe consequences for the
way in which the Intermittentists analyse their data and draw
their conclusions.

This leaves us with an interesting point about the difference
between real space and wavenumber space. The above comments
are  true  for  structure  functions,  because  in  $r$-space
everything  is  local.  In  contrast,  the  nonlinear  energy
transfers  in  $k$-space  are  highly  nonlocal.  The  dominant
feature in wavenumber space is the flux of energy through the
modes, from low wavenumbers to high. The Kolmogorov picture
involves the onset of scale invariance at a critical Reynolds
number, and the increasing extent of the associated inertial
range of wavenumbers as the Reynolds number increases. The
infinite Reynolds number limit in $k$-space then corresponds
to the inertial range being of infinite extent. At finite
Reynolds numbers, it will be of merely finite extent, but
there is no reason to believe that there is any other finite
Reynolds number correction. I believe that this is more than
just a conjecture.

[1]A.  M.  Obukhov.  On  the  distribution  of  energy  in  the



spectrum of turbulent flow. C.R. Acad. Sci. U.R.S.S, 32:19,
1941.

[2] L. Onsager. The Distribution of Energy in Turbulence.
Phys. Rev., 68:281, 1945.

[3] G. K. Batchelor. Kolmogorov’s theory of locally isotropic
turbulence. Proc. Camb. Philos. Soc., 43:533, 1947.

Scientific discussion in the
turbulence community.

Scientific  discussion  in  the
turbulence community.
Shortly after I retired, I began a two-year travel fellowship,
with the hope of having interesting discussions on various
aspects of turbulence. I’m sure that I had many interesting
discussions, particularly in trying out some new and half-
baked ideas that I had about that time, but what really sticks
in my mind are certain unsatisfactory discussions.

To set the scene, I had recently become aware of Lundgren’s
(2002) paper [1] and, having worked through it in detail, I
was convinced that it offered a proof that the second-order
structure  function  took  the  Kolmogorov  `2/3’  form
asymptotically  in  the  limit  of  infinite  Reynolds  numbers.
There  is  of  course  little  or  no  disagreement  about
Kolmogorov’s derivation of the `4/5’ law for the third-order
structure  function.  For  stationary  turbulence,  it  is
undoubtedly asymptotically correct in the infinite Reynolds
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number limit. But in order to find the second-order form,
Kolmogorov had to make the additional assumption that the
skewness of the longitudinal derivative became constant in the
infinite Reynolds number limit. Introducing the skewness $S$
as $S=S_3(r)/S_2(r)^{3/2}$, and substituting the `4/5’ law for
$S_3$,  results  in  the  well-known  form
$S_2(r)=(-4/5S)^{2/3}\varepsilon^{2/3}r^{2/3}\equiv
C_2\varepsilon^{2/3}r^{2/3}$.  Numerical  results  do  indeed
suggest that the skewness becomes independent of the Reynolds
number as the latter increases, but it remains a weakness of
the theory that this assumption is needed.

Lundgren [1] started, like Kolmogorov, from the Karman-Howarth
equation (KHE), and did the following. He put the KHE in
dimensionless form by a generic change of variables based on
time-dependent length and velocity scales, $l$ and $u$. He
then  chose  to  examine:  first,  Von  Karman  scaling;  and
secondly, Kolmogorov scaling, with appropriate choices for $l$
and $u$. In both cases, he solved for the scaled second-order
structure  function  by  a  perturbation  expansion  in  inverse
powers of the Reynolds number. He then employed the method of
matched asymptotic expansions which recovered the Kolmogorov
form for $S_2$. The `4/5’ law was also recovered for $S_3$,
both results naturally following in the large Reynolds number
limit. A more extensive account of this work can be found in
Section 6.4.6 of my 2014 book.

Before setting off on my travels, I consulted a colleague who,
although specializing in soft matter, had some familiarity
with turbulence. To my surprise he seemed quite unenthusiastic
about this work. He said something to the effect that it was a
pity that Lundgren had to assume the same scaled form for both
the second-order and the third-order structure functions. Now,
on reflection I saw that this was nonsense. All Lundgren did
was  introduce  a  change  of  variables:  this  is  not  an
assumption;  it  merely  restates  the  problem,  as  it  were.
Secondly,  the  basic  Kolmogorov  theory  deals  with  the



probability distribution functional, and this means that all
the moments (and hence structure functions) will be affected
in the same way by any operation on it [2].

On the first of my visits, I began to discuss this with
Professor X, who seemed very sceptical at first, then his
comments seemed increasingly irrelevant, then he realised that
he  was  thinking  of  an  entirely  later  piece  of  work  by
Lundgren.  At  that  point  the  discussion  fizzled  out.

On a later visit to a different university, at an early stage
in  the  discussion  with  Professor  Y,  I  commented  that  the
method relied on the fact that the Karman-Howarth equation was
local in the variable $r$. To which he swiftly replied: `Yes
Tom does have to assume that.’ That effectively brought things
to a close, because once again we are faced with nonsense. In
fact this particular individual seems to believe that the
existence  of  an  energy  cascade  implies  that  the  KHE  is
nonlocal! But of course the nonlocalness is confined to the
Lin equation in wavenumber space.

On a later occasion, I tried to bring the subject up again,
but no luck. He said: `Tom just makes the same assumptions as
Kolmogorov did. So there is nothing new.’ At this point I
finally gave up. However, as we have just seen, Kolmogorov has
to  assume  that  the  skewness  $S$  becomes  constant  as  the
Reynolds number increases. In contrast, the Lundgren analysis
actually shows that this is so. In addition, it also provides
a way of assessing systematic corrections to the `4/5’ law at
large but finite Reynolds numbers.

The basic theoretical problems in turbulence are very hard and
perhaps even impossible to solve, in a strict sense. However,
the fact that lesser problems of phenomenology are plagued by
controversy,  with  issues  remaining  unresolved  for  decades,
seems to me to be a matter of attitude (and culture) that
leads to a basic lack of scholarship. I think we need to trade
in the old turbulence community and get a new one.



[1]Thomas S. Lundgren. Kolmogorov two-thirds law by matched
asymptotic expansion. Phys. Fluids, 14:638, 2002.

[2] I have to own up to an error here. For years I argued that
only  the  second-  and  third-order  structure  functions  were
involved in Kolmogorov and hence conclusions based on higher-
order  moments  were  irrelevant.  Then  (quite  recently!)  I
noticed  in  a  paper  by  Batchelor  the  comment  that  as  the
hypotheses were for the pdf, they automatically applied to
moments of all orders.


