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In  the  late  1940s,  the  remarkable  success  of  arbitrary
renormalization  procedures  in  quantum  electrodynamics  in
giving an accurate picture of the interaction between matter
and the electromagnetic field, led on to the development of
quantum field theory. The basis of the method was perturbation
theory, which is essentially a way of solving an equation by
expanding  it  around  a  similar,  but  soluble,  equation  and
obtaining the coefficients in the expansion iteratively.

As a result of these successes, perturbation theory became
part of the education of every physicist. Indeed, it is not
too much to say that it is part of our DNA. Yet, a few years
ago,  when  I  looked  at  the  website  of  an  applied  maths
department,  they  had  a  lengthy  explanation  of  what
perturbation  theory  was,  as  they  were  using  it  on  some
problem.  One  simply  couldn’t  imagine  that,  on  a  physics
department  website,  and  it  illustrates  the  cultural  voids
between different disciplines in the turbulence community. For
instance, I used to hear/read comments to the effect that
‘isotropic  turbulence  had  been  studied  for  its  potential
application to shear flows, but this proved not to be the case
and now it was of no further interest.’ From a physicist’s
point of view, the reason for studying isotropic turbulence is
the  same  as  the  motivation  for  being  the  first  to  climb
Everest. Because it is there! But, interestingly, the study of
isotropic turbulence has increased in recent years, driven by
the growth of direct numerical simulation of the equations of
motion as a discipline in its own right.

However,  back  to  the  sixties.  The  idea  of  applying  these
methods to turbulence caught on, and for a while things seem
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to have been quite exciting. In particular, there were the
pioneering theories of Kraichnan, Edwards and Herring. There
was also, the formalism of Wyld, which was the most like
quantum field theory. At this point, I know from long and
bitter experience that there will be wiseacres muttering ‘Wyld
was wrong’. They won’t know what exactly is wrong, but they
will be quoting a well-known later formalism by Martin, Siggia
and Rose. In fact it has recently been shown that the two
formalisms are compatible, once some simple procedural changes
have been made to Wyld’s approach [1].

We will return to Wyld in a later post (and also to the
distinction between formalisms and theories). Here we want to
take a critical look at the underlying physics of applying the
methods of quantum field theory to fluid turbulence. It is one
thing  to  apply  the  iterative-perturbative  approach  to  the
Navier-Stokes  equations  (NSE),  and  another  to  justify  the
application  of  specific  renormalization  procedures  to  a
macroscopic phenomenon in classical physics. So, let’s begin
by formulating the problem of turbulence for this purpose, in
order to see whether the analogy is justified.

We consider a cubical box of side $L$, occupied by a fluid
which is stirred by random forces with a multivariate-normal
distribution and with instantaneous correlation in time. This
condition ensures that any correlations which arise in the
velocity field are due to the NSE. It also is known as the
white noise condition and allows us to work out the rate at
which  the  forces  do  work  on  the  fluid  in  terms  of  the
autocorrelation of the random forces, which is part of the
specification of the problem. (Occasionally one sees it stated
that the delta-function autocorrelation in time is needed for
Galilean invariance. I must say that I would like to see a
reasoned justification for that statement.)

By expanding the velocity field (and pressure) in Fourier
series, we can study the NSE in wavenumber $k$ space. It is
usual  nowadays  to  proceed  immediately  to  the  limit  $L



\rightarrow  \infty$  and  make  use  of  the  Fourier  integral
representation. It is important to note, that this is a limit.
It does not imply that there is a quantity $\epsilon = 1/L =
0$. It does however imply that all our procedures and results
must be independent of $L$. Then the problem may be seen as
one of strong nonlinear coupling, due to the form of the
nonlinear term in wavenumber space.

Strong nonlinear coupling? Well that’s the conventional view
and it is certainly not wrong. But let’s not be too glib about
this. It is well known, and probably has been since at latest
the early part of the last century, that making variables non-
dimensionless on specific length- and velocity-scales results
in a Reynolds number appearing in front of the nonlinear term
as a prefactor. Expressing, this in terms of quantum field
theory, the Reynolds number plays the part of the coupling
constant. In quantum-electrodynamics, the coupling constant is
the fine-structure constant with a value of about $1/137$, and
thus provides a small parameter for perturbation expansion.
While the resulting series is not strictly convergent, it does
give answers of astonishing accuracy. It is equally well known
that  attempting  perturbation  theory  in  fluid  dynamics  is
unwise  for  anything  other  than  creeping  flow,  where  the
Reynolds number is small. So applying perturbation theory to
turbulence looks distinctly unpromising.

There is also the basic phenomenology of turbulence which we
must take into account. The stirring motion of the forces will
produce  fluid  velocities  with  normal  (or  Gaussian)
distributions. Then the effect of the nonlinear coupling is to
generate modes with larger values of wavenumber than those
initially stirred. This is accompanied by the transfer of
energy from small wavenumbers to large, and if left to carry
on would lead to equipartition for any finite set of modes,
albeit  with  the  total  energy  increasing  with  time.  This
assumes  the  imposition  of  a  cut-off  wavenumber,  but  in
practice the action of viscosity is symmetry-breaking, and the



kinetic energy of turbulent motion leaves the system as heat.
The situation is as shown in the sketch which, despite our
restriction to isotropic turbulence in a box, is actually
quite illustrative of what goes on in many turbulent flows.

Sketch of the energy spectrum of
isotropic turbulence at moderate
Reynolds number.

Various characteristic scales can be defined, but the most
important  is  the  Kolmogorov  dissipation  wavenumber,  thus:
$k_d=(\varepsilon /\nu_0^3)^{1/4}$, which gives the order of
magnitude of the wavenumber at which the viscous effects begin
to dominate. For the application of renormalized perturbation
theory  (which  we  will  discuss  in  a  later  post),  this
phenomenology is important for assessment purposes. However,
when we look at the later introduction of renormalization
group theory, we have to consider this picture in rather more
detail. We will do that in the next post.
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