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Intermittency corrections (sic) and
the perversity of group think.
In The Times of 11 January this year, there was a report by
their Science Editor which had the title Expert’s lonely 30-
year  quest  for  Alzheimer’s  cure  offers  new  hope.  Senile
dementia is the curse of the age (even if temporarily eclipsed
by the Corona virus) and the article tells how in 1905 Alois
Alzheimer made a post mortem examination of the brain of a
woman  who  in  her  later  years  had  become  confused  and
forgetful. He found two pathological features: one consisted
of clumps of plaques of a protein called beta amyloid and the
other consisted of sticky tangles of a different protein,
later identified by a Professor Claude Wischik as a protein
called tau.

Now,  with  two  possible  causes,  you  might  imagine  that
researchers in the field would be interested in both. But you
would be wrong. It seems that the community targeted the beta
amyloid  cause  and  for  many  years  neglected  the  other
possibility.  Now,  after  decades  of  failure,  the  major
pharmaceutical companies are developing anti-tau drugs. Even
if none of these proves to be the magic bullet, it seems a
healthier  situation  that  both  symptoms  (and  the  possible
interaction between them) are being studied. The article ends
on a note of moderate optimism, but the question remains: why
was the research skewed towards just the one possibility? The
article seems to suggest that this may have been because beta
amyloid was already known and possibly implicated in another
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pathology.  As  always,  in  applied  research  there  is  a
temptation  to  go  for  the  `quick  and  dirty  solution’!

The behaviour of the researchers pursuing the beta amyloid
option (to the exclusion of the equally possible tau option)
exhibits some of the characteristics of what psychologists
call  group  think.  A  similar  phenomenon  has  been  part  of
fundamental research on turbulence for at least five decades.
As is well known, it started with a remark by Landau about the
Kolmogorov (1941) theory; or K41 for short. This criticism is
based on the idea that intermittency of the dissipation rate
has implications for the K41 theory, despite the fact that the
physical basis of that theory is the inertial transfer rate,
which  is  sometimes  equal  to  the  dissipation  rate.  This
criticism, along with various others, is discussed in Chapters
4 and 6 of my 2014 book on turbulence and I will not consider
it further here. All I wish to note is that there has been an
ongoing body of work on so-called intermittency corrections,
and the strange thing is that more obvious corrections have
been largely neglected, until quite recent times. Let us now
expand on that.

Essentially  Kolmogorov  used  Richardson’s  concept  of  the
cascade  to  argue  that  energy  transfer  would  proceed  by  a
stepwise process from large scales (production range) to small
scales and this would result in a universal form for the
structure functions in these small scales. Furthermore, for
large Reynolds numbers, the effect of the viscosity would only
be appreciable at very small scales, and there would be an
intermediate subrange of scales where the local excitation
would be controlled by inertial transfer into the subrange
from  the  large  scales  and  inertial  transfer  out  of  the
subrange into the small scales where it would be dissipated by
viscous effects.

At this point, I should enter a small caveat. I feel quite
uncomfortable with what I have just written. The physical
concept of the cascade is rather ill-defined in real space. I



would be much happier talking in terms of wavenumber space
where the cascade is well defined and the key concept is
scale-invariance  of  the  inertial  flux.  This  fact  was
recognized  by  Obukhov  (1941),  by  Onsager  (1945)  and  by
Batchelor (1947), and after that very widely. It is rather as
if Kolmogorov, in choosing to work in real space, had opted
for Betamax rather than VHS!

However, ignoring my quibbles, in either space one point is
clear:  this  is  an  approximate  theory.  Either  $S_2  \sim
\varepsilon^{2/3}r^{2/3}$  or  $E(k)  \sim
\varepsilon^{2/3}k^{-5/3}$ is only asymptotically valid in the
limit  of  infinite  Reynolds  numbers.  Under  all  other
circumstances,  there  must  be  corrections  due  to  finite-
Reynolds number (FRN) effects. These corrections may be small
enough to ignore: bear in mind that on various measures an
infinite  Reynolds  number  is  not  all  that  large.  There  is
certainly no need to worry about zero viscosity (pace) Onsager
and his hagiographers! We shall return to this specific point
in later posts.

The  response  of  Kolmogorov  to  Landau’s  criticism  was  the
somewhat ad hoc K62, in which the retention of the specific
effect of the large scales of the system (in both structure
functions  and  spectra),  completely  reversed  the  original
assumption  of  the  stepwise  cascade  leading  to  universal
behaviour. For reasons that are far from clear to me, this
sparked off a positive industry of intermittency corrections,
anomalous  exponents  and  various  improvements  (sic)  on
Kolmogorov, which lasts to this day. In contrast, from the
late  1990s,  increasing  attention,  both  experimental  and
theoretical, has been given to FRN effects, and in particular
the way in which they have been ignored in assessing the
evidence  for  anomalous  exponents  and  suchlike.  We  may
highlight the situation in the field by contrasting two major
papers, both published in leading learned journals within the
last year.



The first of these is by Tang et al [1], who note in their
abstract  that  K62  `has  been  embraced  by  an  overwhelming
majority of turbulence researchers.’ This paper is one in a
series in which this group has investigated the alternative
effect of finite Reynolds number corrections. In addition to
their own analysis, they also cite many papers from recent
years  which  support  their  conclusion  that  the  failure  to
account for FRN effects has `almost invariably been mistaken
for  the  intermittency  effect’.  In  the  main  body  of  their
paper,  they  express  themselves  even  more  forcibly.  In
contrast, the paper by Dubrulle [2], which is very much in the
K62 camp, so to speak, cites not a single reference to FRN
effects.  Instead  the  author  argues  that  small-scale
intermittency is incompatible with homogeneity, and makes the
radical proposal that the Karman-Howarth equation should be
replaced by a weak form which takes account of singularities.
At this point one takes leave of continuum mechanics and much
else besides! If we consult Batchelor’s book, we find that
homogeneity is defined in terms of mean quantities and is
therefore  entirely  compatible  with  intermittency  of  the
velocity field, which is nowadays understood to be present at
all scales.

I was tempted to say that it is difficult to imagine such a
fundamental gulf in any subject other than turbulence, but
then that’s where we came in!

[1] S. Tang, R. A. Antonia, L. Djenidi, and Y. Zhou. Phys
.Rev. Fluids 4, 024607 (2019).

[2] B. Dubrulle. J. Fluid Mech. 867, P1, (2019).
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Bad  proofs  and  `curate’s  egg’
theories.
At about the time I took up my appointment at Edinburgh, I
heard about a pure mathematician who wanted to be remembered
for his bad proofs. Some years later I read his obituary in
The Times and this fact was mentioned again. I had thought
that I had kept the cutting but it seems not, so I’m afraid
that I don’t remember his name. But I do remember what was
meant by the term `bad proofs’. This man’s view was that many
proofs in mathematics have been polished by various hands over
the years and he wanted to be remembered for his originality.
His proofs would be unpolished and hence seen as original.

The choice of the word `bad’ is interesting, in view of its
pejorative overtones. I would be inclined to think that the
original proof would at least be valid and hence not to be
described as bad. Perhaps, later more elegant versions of the
proof would emphasise the unpolished nature of the original.
Hence,  perhaps  `rough’  might  be  a  better  description.
Presumably  the  word  `bad’  was  chosen  to  emphasise  the
paradoxical appearance of that statement. Well, at least he is
being remembered for his quirky assertion about what he wanted
to be remembered for.

For some time I have wondered whether there is an analogous
term for turbulence theories. By which I mean attempts to
solve the statistical closure problem. This was originally
formulated by Reynolds for pipe flow, but as usual we will
consider it here as applied to isotropic turbulence. Obviously
`bad’ is no good, because we do not have the paradoxical
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juxtaposition that we have with the word `proof’, which in
itself indicates success, which is certainly not bad. One
obvious possibility would be `rough’ but somehow that does not
appeal.  `Rough  theories’  does  not  sound  good.  In  fact  it
sounds bad.

Recently  I  came  up  with  the  idea  of  the  `curate’s  egg’
theories, meaning `good in parts’. This saying stems from a
cartoon which appeared in the British humorous magazine Punch
in  1895.  It  shows  a  nervous  curate  breakfasting  with  the
bishop. The bishop expresses concern that the curate’s egg is
not a good one. The curate, anxious not to make a fuss,
bravely asserts that his egg is `good in parts’. The term
passed into everyday speech and was still current when I was
young. In the 1960s I was commuting regularly by train, and I
would buy Punch to read on the journey. On one occasion there
was a commemorative issue and a facsimile of the original
cartoon was reproduced, so I was interested to see the origin
of the phrase. We didn’t have Google in those days!

The reason that I think that such a term might be helpful is
that many members of the turbulence community seem to see a
theory as being either right or wrong. And if it’s deemed to
be wrong, then it should be dismissed and never considered
again. A striking example of this kind of thing arose a few
years ago when I was trying to get a paper on the LET theory
published (see #10 in the list of recent papers)) and it had
gone to arbitration. The Associate Editor who was consulted
turned the paper down because `this is the sort of stuff
Kraichnan did and everybody has known for the last twenty
years that it’s wrong’.

This decision was easily overturned. The sheer idiocy of the
proposition that, because one person had tackled a problem and
failed, other people should be barred from making further
attempts, ensured that. But what interests me is the fact that
Kraichnan’s  work  is  reduced  to  `the  sort  of  stuff’  and
regarded as `wrong’. This was done by someone who was an



applied mathematician and not a theoretical physicist. I am
not a betting man, but I would put a small amount of money on
the assumption that this referee had very little knowledge of
Kraichnan’s vast output, and was relying on hearsay for his
opinion. I understand the difficulties facing anyone from an
engineering background in trying to get to grips with this
type  of  many-body  or  field  theory  although  there  are
accessible treatments available. But if you are unable to
understand this work in detail, then it is unlikely that you
are qualified to referee it.

If we take an example from physics, in critical phenomena
(e.g. the transition from para- to ferromagnetism) the subject
was dominated by mean-field theory up until the late 1970s,
when  renormalization  group  (RG)  was  applied  to  critical
phenomena.  This  does  not  mean  that  mean-field  theory  was
immediately  dismissed.  In  fact  it  is  still  taught  in
undergraduate  courses.  Prior  to  RG  there  was  a  balanced
understanding of the limitations and successes of mean-field
theory and no one ever thought of it as `right’, with the
corollary that no one now dismisses it as simply `wrong’.

I know what I would like to have for other subjects, such as
cosmology, particle theory or indeed musical theory. I would
like to be able to read a simple account which explains the
state of play, without going into too much detail. That is
what  I  intend  to  provide  for  statistical  theories  of
turbulence  in  future  posts.  In  my  view,  most  theories  of
turbulence can be regarded as `curate’s eggs’: they have both
good  and  bad  aspects.  The  important  thing  is  that  those
working  in  the  field  of  turbulence  should  have  some
understanding  of  the  situation  and  should  appreciate  the
importance of having further research in this area.



The  infinite-Reynolds  number
limit: a first look

The infinite-Reynolds number limit:
a first look.
I notice that MSRI at Berkeley have a programme next year on
math problems in fluid dynamics. The primary component seems
to be an examination of the relationship between the Euler and
Navier-Stokes equations, `in the zero-viscosity limit’. The
latter  is,  of  course,  the  same  as  the  limit  of  infinite
Reynolds numbers, providing that the limit is taken in the
same way with the same constraints. I think that it is a
failure to appreciate this proviso that has resulted in the
concept becoming something of a vexed question over the years.
Yet  it  was  clearly  explained  by  Batchelor  in  1953  and
elegantly re-formulated by Edwards in 1965. As a result, a
group of theorists has been quite happy about the concept, but
many other workers in the field seem to be uneasy.

I first became aware of this when talking to Bob Kraichnan at
a  meeting  in  1984.  When  I  used  the  term,  his  reaction
surprised me. He began to hold forth on the subject. He said
that people were `frightened’ of the idea of the infinite-
Reynolds number limit. Rather defensively I said that I wasn’t
frightened by it. His reply was. `Oh, I know that you aren’t
but you would be surprised at the number of people who are!’
Since then I have indeed been surprised by how often you get a
comment from a referee which goes something like: `The authors
take the infinite-Re limit … but of course you cannot really
have zero viscosity, can you.’ This rather nervous addendum
suggests strongly that the referee does not understand the
concept of a limit.
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Well, one thing I would claim to understand is the idea of a
limit in mathematical analysis. This is because the first
class of my school course on calculus dealt with nothing else.
I can remember that class period clearly, even although it was
about sixty five years ago. One example that our maths master
gave, was to imagine that you were cutting up your twelve-inch
ruler, which was standard in those days. You cut it into two
identical pieces in a perfect cutting process, with no waste.
Then you put one piece over to your right hand side, and now
cut the left hand piece into two identical pieces. One of
these you put over to the right hand side, and add it on to
the six-inch piece already there, to make a nine-inch ruler.
The remaining piece you again cut into two, and move half over
to make a ten and a half inch ruler. However much you repeat
this process, the ruler will approach but never reach twelve
inches again. In other words, twelve inches is the limit and
you can only approach it asymptotically.

Suppose  we  carry  out  a  similar  thought  experiment  on
turbulence; although you could actually do this, most readily
by DNS. What we are going to do is to stir a fluid in order to
produce stationary, isotropic turbulence. Now at this stage,
we don’t even think about dissipation. We are trying to drive
a dynamical system and we start by specifying the forcing in
terms of the rate of doing work on the fluid. We call this
quantity $\varepsilon_W$ and it is fixed. Next our dynamical
system  is  fully  specified  once  we  choose  the  boundary
conditions  and  the  kinematic  viscosity  $\nu$.  Accordingly,
providing the forcing spectrum is peaked near the origin in
wavenumber space, and there has been an appropriate choice of
value of the initial kinematic viscosity, energy will enter
the system at low wavenumbers, be transferred by conservative
inertial  processes  to  higher  wavenumbers,  and  ultimately
dissipated at the highest excited wavenumbers. Once the system
becomes stationary, the dissipation rate must be equal to the
rate  of  doing  work,  and  so  the  Kolmogorov  dissipation
wavenumber is given by $k_d = (\varepsilon_W /\nu^3)^{1/4}$.



Now  let  us  carry  out  a  sequence  of  experiments  in  which
$\varepsilon_W$ remains fixed, but we progressively reduce the
value of the kinematic viscosity. In each experiment, the
viscosity is smaller and the dissipation wavenumber is larger.
Therefore there is a greater volume of wavenumber space and it
will  take  longer  to  fill  with  energy.  Ultimately,
corresponding to the limiting case, we have an infinite volume
of wavenumber space and the system will take an infinite time
to  reach  stationarity  and  in  principle  will  contain  an
infinite  amount  of  energy.  Note  that  this  is  not  a
catastrophe! In continuum problems, a catastrophe is when you
get an infinite density of some kind. Here the work, transfer
and dissipation rates are the densities of the problem, and
they are perfectly well behaved.

At this stage, when I try to discuss the infinite Reynolds
number  limit,  people  tend  to  get  uneasy  and  talk  about
possible  singularities  or  discontinuities.  I  don’t  really
think that there is any cause for such hand-wringing. You have
to decide first, which Navier-Stokes equation (NSE) you are
using. There are two possibilities and they are identical; but
we arrive at them by different routes.

If  we  arrive  at  the  NSE  by  continuum  mechanics,  then  in
principle we can take the limit of zero viscosity without
worry. After all, this is just a model of a real viscous fluid
and, among other things, it is rigorously incompressible which
a real fluid isn’t. We accept that in practice that it is the
flow which is incompressible, not the fluid. So if the density
variations are too small to detect, we can safely use the NSE.

If you come by the statistical physics route, then you must
bound  the  smallest  length  scale  (here  the  Kolmogorov
dissipation length scale) such that it is orders of magnitude
larger than inter-molecular distances. In practice, we may see
the  asymptotic  behaviour  associated  with  small  viscosity
arising  long  before  there  is  any  danger  of  breaching  the
continuum limit. For instance, if we look at the behaviour of



the dimensionless dissipation rate as the Reynolds number is
increased (see Fig. 1 of paper #6 in my list of recent papers)
we are actually seeing the onset of the infinite Reynolds
number  limit.  The  accuracy  of  the  determinations  of
$C_{\varepsilon,\infty}$ in this work is very decent, but if
greater accuracy were required, then a bigger simulation would
provide. Just like in boundary layer theory, it is all a
matter of quite pragmatic considerations. I will give a more
pedagogic discussion of this topic in a future post.

A  first  look  at  Kolmogorov
(1941)

A first look at Kolmogorov (1941)
Around the turn of the new millennium, I attended the PhD oral
of one of my own students for the last time as Internal
Examiner. After that the regulations were changed; or perhaps
it was frowned on for the supervisor to also be the Internal.
Later still I stopped attending in any capacity: I think it
became that the student had to invite their supervisor if they
wanted them to attend. Is this an improvement on the previous
system?  Actually,  my  own  PhD  oral  was  conducted  by  David
Leslie, who had previously been my second supervisor, and Sam
Edwards who was my first supervisor! The three of us had had
many discussions of my work in the past, so the atmosphere was
informal  and  friendly.  But  I  don’t  think  the  examination
lacked rigour and I suppose it would have been difficult to
find anyone else in the UK who could have acted as external
examiner.
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However, back to my own last stint as Internal. The candidate
was  a  graduate  with  joint  honours  in  maths  and  computer
science. He was a very able young man and did good work, but
he  was  not  a  physicist  and  never  quite  engaged  with  the
physics. So when the External asked him if he could derive the
Kolmogorov spectrum, he said `No’, then added pertly `Can
you?’ Alas, the External was unable to do so. Fortunately the
Internal was able to go to the blackboard and do the needful.
The External was quite a well-known member of the turbulence
community, so we will spare his blushes. Yet, it left me
wondering how many turbulence researchers could sit down and
derive the Kolmogorov energy spectrum, or equivalently the
second-order structure function, without consulting a book?
For any such benighted souls, I will now offer a crib. Virtue
should be its own reward, but in the process of putting this
together, I think I have found the answer to something that
had puzzled me. I will return to that at the end of this post.

For simplicity, let’s work with the second-order structure
function $S_2(r)$. This is what Kolmogorov did: the form for
the energy spectrum came later. Glossing over the physical
justification, we consider the question: how do we express
$S_2(r)$ in terms of the dissipation rate $\varepsilon$ and
the  distance  between  measuring  points  $r$,  for  some
intermediate  range  of  values  of  $r$?

The first thing to notice is that $S_2$ has dimensions of
velocity  squared  (or  energy  per  unit  mass:  we  won’t  keep
repeating this) and that the dissipation is the rate of change
of the energy with time. It follows that $S_2$ depends on the
inverse of time squared whereas dissipation depends on the
inverse of time cubed. Hence, the structure function must
depend on the dissipation to the power of $2/3$. Or,

\[S_2(r) \sim \varepsilon^{2/3}.\]

This is the Kolmogorov result. Put in its most general form:
if you seek to express the energy in terms of the dissipation,



inertial  transfer,  eddy-decay  rate,  or  any  other  rate  of
change, you must have a two-thirds power from the need to have
consistency of the time dimension across both sides of the
equation.

Now what happens when we tidy up the dimensions of length? On
the  right  hand  side  of  the  equation,  we  now  have  the
dimensions of length to the power of $4/3$. In order to make
this consistent with $S_2$ on the left hand side, we must
multiply by a length to the power of $2/3$. From Kolmogorov
(1941), this length must be $r$, and if we put a constant $C$
in front, we recover the well-known K41 result

\[S_2(r) = C r^{2/3}\varepsilon^{2/3}.\]

If however, we think that it might also depend on another
length, then we only have available some length characteristic
of the size of the system, say $L_{ext}$. If we include this,
then we must multiply the right hand side by $L_{ext}^p r^m$,
where $p+m=2/3$. In other words, the power of $r$ is no longer
determined. This is, in effect, what Kolmogorov did in 1962,
albeit by a more circuitous route. And, in the process he
threw away his entire theory, which was based on the idea that
the many steps of the Richardson cascade would lead to a
universal result at small scales. In Kolmogorov (1962) that
does not happen: the final result depends on the physical size
of the system.

Let us now hark back to what had puzzled me. In a previous
post  I  mentioned  a  contumacious  referee.  In  fact  this
individual kept asserting that `$r^{2/3}$ is not Kolmogorov’.
We pressed him to explain but it was clear that he had found
his excuse for rejecting the paper and wasn’t prepared to be
more helpful (or indeed scholarly). As our paper contained a
discussion of the fact that the extended scale similarity
technique  gave  the  two-thirds  law  as  an  artifact  in  the
dissipation  range,  it  is  possible  that  he  was  actually
agreeing with us! However, taking his comment as a general



statement, I would be inclined to agree with it. From the
discussion we have given above, it should be clear that it is
the dependence on the dissipation rate to the two-thirds power
that is actually Kolmogorov. For anyone interested, the paper
is Number 7 in the list of my recent papers given on this
website.


