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I notice that MSRI at Berkeley have a programme next year on
math problems in fluid dynamics. The primary component seems
to be an examination of the relationship between the Euler and
Navier-Stokes equations, `in the zero-viscosity limit’. The
latter  is,  of  course,  the  same  as  the  limit  of  infinite
Reynolds numbers, providing that the limit is taken in the
same way with the same constraints. I think that it is a
failure to appreciate this proviso that has resulted in the
concept becoming something of a vexed question over the years.
Yet  it  was  clearly  explained  by  Batchelor  in  1953  and
elegantly re-formulated by Edwards in 1965. As a result, a
group of theorists has been quite happy about the concept, but
many other workers in the field seem to be uneasy.

I first became aware of this when talking to Bob Kraichnan at
a  meeting  in  1984.  When  I  used  the  term,  his  reaction
surprised me. He began to hold forth on the subject. He said
that people were `frightened’ of the idea of the infinite-
Reynolds number limit. Rather defensively I said that I wasn’t
frightened by it. His reply was. `Oh, I know that you aren’t
but you would be surprised at the number of people who are!’
Since then I have indeed been surprised by how often you get a
comment from a referee which goes something like: `The authors
take the infinite-Re limit … but of course you cannot really
have zero viscosity, can you.’ This rather nervous addendum
suggests strongly that the referee does not understand the
concept of a limit.
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Well, one thing I would claim to understand is the idea of a
limit in mathematical analysis. This is because the first
class of my school course on calculus dealt with nothing else.
I can remember that class period clearly, even although it was
about sixty five years ago. One example that our maths master
gave, was to imagine that you were cutting up your twelve-inch
ruler, which was standard in those days. You cut it into two
identical pieces in a perfect cutting process, with no waste.
Then you put one piece over to your right hand side, and now
cut the left hand piece into two identical pieces. One of
these you put over to the right hand side, and add it on to
the six-inch piece already there, to make a nine-inch ruler.
The remaining piece you again cut into two, and move half over
to make a ten and a half inch ruler. However much you repeat
this process, the ruler will approach but never reach twelve
inches again. In other words, twelve inches is the limit and
you can only approach it asymptotically.

Suppose  we  carry  out  a  similar  thought  experiment  on
turbulence; although you could actually do this, most readily
by DNS. What we are going to do is to stir a fluid in order to
produce stationary, isotropic turbulence. Now at this stage,
we don’t even think about dissipation. We are trying to drive
a dynamical system and we start by specifying the forcing in
terms of the rate of doing work on the fluid. We call this
quantity $\varepsilon_W$ and it is fixed. Next our dynamical
system  is  fully  specified  once  we  choose  the  boundary
conditions  and  the  kinematic  viscosity  $\nu$.  Accordingly,
providing the forcing spectrum is peaked near the origin in
wavenumber space, and there has been an appropriate choice of
value of the initial kinematic viscosity, energy will enter
the system at low wavenumbers, be transferred by conservative
inertial  processes  to  higher  wavenumbers,  and  ultimately
dissipated at the highest excited wavenumbers. Once the system
becomes stationary, the dissipation rate must be equal to the
rate  of  doing  work,  and  so  the  Kolmogorov  dissipation
wavenumber is given by $k_d = (\varepsilon_W /\nu^3)^{1/4}$.



Now  let  us  carry  out  a  sequence  of  experiments  in  which
$\varepsilon_W$ remains fixed, but we progressively reduce the
value of the kinematic viscosity. In each experiment, the
viscosity is smaller and the dissipation wavenumber is larger.
Therefore there is a greater volume of wavenumber space and it
will  take  longer  to  fill  with  energy.  Ultimately,
corresponding to the limiting case, we have an infinite volume
of wavenumber space and the system will take an infinite time
to  reach  stationarity  and  in  principle  will  contain  an
infinite  amount  of  energy.  Note  that  this  is  not  a
catastrophe! In continuum problems, a catastrophe is when you
get an infinite density of some kind. Here the work, transfer
and dissipation rates are the densities of the problem, and
they are perfectly well behaved.

At this stage, when I try to discuss the infinite Reynolds
number  limit,  people  tend  to  get  uneasy  and  talk  about
possible  singularities  or  discontinuities.  I  don’t  really
think that there is any cause for such hand-wringing. You have
to decide first, which Navier-Stokes equation (NSE) you are
using. There are two possibilities and they are identical; but
we arrive at them by different routes.

If  we  arrive  at  the  NSE  by  continuum  mechanics,  then  in
principle we can take the limit of zero viscosity without
worry. After all, this is just a model of a real viscous fluid
and, among other things, it is rigorously incompressible which
a real fluid isn’t. We accept that in practice that it is the
flow which is incompressible, not the fluid. So if the density
variations are too small to detect, we can safely use the NSE.

If you come by the statistical physics route, then you must
bound  the  smallest  length  scale  (here  the  Kolmogorov
dissipation length scale) such that it is orders of magnitude
larger than inter-molecular distances. In practice, we may see
the  asymptotic  behaviour  associated  with  small  viscosity
arising  long  before  there  is  any  danger  of  breaching  the
continuum limit. For instance, if we look at the behaviour of



the dimensionless dissipation rate as the Reynolds number is
increased (see Fig. 1 of paper #6 in my list of recent papers)
we are actually seeing the onset of the infinite Reynolds
number  limit.  The  accuracy  of  the  determinations  of
$C_{\varepsilon,\infty}$ in this work is very decent, but if
greater accuracy were required, then a bigger simulation would
provide. Just like in boundary layer theory, it is all a
matter of quite pragmatic considerations. I will give a more
pedagogic discussion of this topic in a future post.


