Elliptic Flavoured PDEs - the Laplacian and Beyond

Erik Sätterqvist

Maxwell PG Colloquium

Three fundamental PDEs

- The wave equation (Hyperbolic)

$$
\Delta u(x, t)-\partial_{t t} u(x, t)=0
$$

- The heat equation (Parabolic)

$$
\Delta u(x, t)-\partial_{t} u(x, t)=0
$$

- The Laplace equation (Elliptic)

$$
\Delta u(x)=0
$$

Here $(x, t) \in \mathbb{R}^{n+1}$ and $\Delta=\Delta_{x}=\partial_{11}+\cdots+\partial_{n n}$

The wave equation

$$
\Delta u(x, t)-\partial_{t t} u(x, t)=0
$$

- Suppose

$$
\left.\partial_{t t}\right|_{t=t_{0}} u(x, t)=0
$$

- Then

$$
\Delta u\left(x, t_{0}\right)=0
$$

The wave equation

The Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u(x, t)-\partial_{t t} u(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=f(x), \\
\partial_{t} u(x, 0)=g(x) .
\end{array}\right.
$$

Solution given by D'lamberts formula

$$
u(x, t)=\frac{1}{2}(f(x-t)+f(x+t))+\frac{1}{2} \int_{x+t}^{x-t} g d s
$$

Simple Dirichlet problem

Let

$$
f(x)=e^{1 /\left(x^{2}-1\right)} \chi_{(-1,1)}, \quad g(x)=0
$$

Simple Dirichlet problem

Let

$$
f(x)=e^{1 /\left(x^{2}-1\right)} \chi_{(-1,1)}, \quad g(x)=0
$$

Simple Dirichlet problem

Let

$$
f(x)=e^{1 /\left(x^{2}-1\right)} \chi_{(-1,1)}, \quad g(x)=0
$$

Simple Dirichlet problem

Let

$$
f(x)=e^{1 /\left(x^{2}-1\right)} \chi_{(-1,1)}, \quad g(x)=0
$$

- Finite propagation speed
- No hope of

$$
\left.\partial_{t t}\right|_{t=t_{0}} u(x, t)=0
$$

The heat equation

$$
\Delta u(x, t)-\partial_{t} u(x, t)=0
$$

- Suppose

$$
\left.\partial_{t}\right|_{t=t_{0}} u(x, t)=0
$$

- Then

$$
\Delta u\left(x, t_{0}\right)=0
$$

The heat equation

The Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u(x, t)-\partial_{t} u(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

The heat equation

The Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u(x, t)-\partial_{t} u(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

Let $\delta(x)$ be a dirac mass i.e. $\delta(x)[f]=f(x)$.

$$
G(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{-x^{2} / 4 t}
$$

solves

$$
\left\{\begin{array}{l}
\Delta u(x, t)-\partial_{t} u(x, t)=0, \quad x \in \mathbb{R}, t>0 \\
u(x, 0)=\delta(x)
\end{array}\right.
$$

- Infinite propagation speed
- Uniform decay in t

$G(\cdot, t)$ Approximate identity

$$
\left\{\begin{array}{l}
\int_{\mathbb{R}} G(x, t) d x=1 \\
G(x, t)=\frac{1}{\sqrt{t}} G(x / \sqrt{t}, 1)
\end{array}\right.
$$

So if $\phi \in C^{0}$ then

$$
G(\cdot, t) * \phi \rightarrow \phi \text { uniformly as } t \rightarrow 0
$$

where

$$
[G(\cdot, t) * \phi](x)=\int_{\mathbb{R}} G(x-y, t) \phi(y) d y
$$

The wave equation

so

$$
u(x, t)=\int_{\mathbb{R}} \frac{1}{\sqrt{4 \pi t}} e^{\left(y^{2}-x^{2}\right) / 4 t} \phi(y) d y
$$

solves
The Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u(x, t)-\partial_{t} u(x, t)=0, \quad x \in \mathbb{R}^{n}, t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

Still have

- Infinite propagation speed
- Uniform decay in t

The Heat equation

$$
\Delta u(x, t)-\partial_{t} u(x, t)=0
$$

- It is reasonable to suppose

$$
\left.\partial_{t}\right|_{t=t_{0}} u(x, t)=0
$$

- so then

$$
\Delta u\left(x, t_{0}\right)=0
$$

The Heat equation

$$
\Delta u(x, t)-\partial_{t} u(x, t)=0
$$

- It is reasonable to suppose

$$
\left.\partial_{t}\right|_{t=t_{0}} u(x, t)=0
$$

- so then

$$
\Delta u\left(x, t_{0}\right)=0
$$

- Can think of solution to $\Delta u=0$ as steady heat flow

The Laplace equation

Let $n=2$

$$
\begin{aligned}
\Delta u(x, y)= & \partial_{x x} u(x, y)+\partial_{y y} u(x, y) \\
= & \frac{u(x-h, y)-2 u(x, y)+u(x+h, y)}{h} \\
& +\frac{u(x, y-h)-2 u(x, y)+u(x, y+h)}{h}+O\left(h^{2}\right)
\end{aligned}
$$

so $\Delta u=0$ implies

$$
u(x, y)=\frac{1}{4}(u(x-h, y)+u(x+h, y)+u(x, y-h)+u(x, y+h))
$$

- $u(x, y)$ is average

The Laplace equation

$\Delta u=0$ in domain $\Omega \subset \mathbb{R}^{n}$

- $u(X)$ is spherical average

$$
u(X)=\frac{1}{|\partial B(X, r)|} \int_{\partial B(X, r)} u d \sigma, \quad \bar{B}(X, r) \subset \Omega
$$

Maximum principle

$$
\sup _{\Omega}|u|=\sup _{\partial \Omega}|u|
$$

$$
u\left(X^{*}\right)=\sup _{\Omega} u
$$

The Laplace equation

Let $\Delta u=0$ and $u \geq 0$ in domain $\Omega \subset \mathbb{R}^{n}$

Harnack's inequality

$$
\sup _{B} u \leq C \inf _{B} u
$$

i.e.

$u \approx$ constant on B.

The Laplace equation

Let $\Delta u=0$ and $u \geq 0$ in domain $\Omega \subset \mathbb{R}^{n}$
Harnack's inequality

$$
\sup _{B} u \leq C \inf _{B} u
$$

i.e.

$u \approx$ constant on B.

The Laplace equation

Let $p>1$ and $f \in L^{p}(\partial \Omega)$ i.e. $\int_{\partial \Omega}|f|^{p}<\infty$
The Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u \xlongequal{\mathrm{w}} 0, \quad \text { in } \Omega \\
u=f, \quad \text { on } \partial \Omega
\end{array}\right.
$$

$\left([D P]_{p}\right)$

- Where should we look for solutions? i.e. $u \in$? Bigger is better!

The Laplace equation

By the fundamental theorem of calculus of variations

$$
\Delta u=0 \text { in } \Omega \Longleftrightarrow \int_{\Omega} \Delta u \varphi=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

IBP implies

$$
\int_{\Omega} \Delta u \varphi=\int_{\Omega} \nabla u \cdot \nabla \varphi=: B_{\Delta}[u, \varphi]
$$

Weak solution

$$
\Delta u \xlongequal{\mathrm{w}} 0 \text { in } \Omega \Longleftrightarrow B_{\Delta}[u, \varphi]=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

The Laplace equation

Weak solution

$$
\Delta u \xlongequal{\mathrm{w}} 0 \text { in } \Omega \Longleftrightarrow B_{\Delta}[u, \varphi]=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

Only need one derivative so take

$$
u \in W^{1,2}(\Omega)=\left\{v: \int_{\Omega}|v|^{2}, \int_{\Omega}|\nabla v|^{2}<\infty\right\}
$$

It is known that

$$
\Delta u \xlongequal{\mathrm{w}} 0 \text { in ball } B \Longrightarrow \Delta u=0 \text { in } B
$$

In fact $u \in C^{\infty}(B)$, hypoellipticity.

The Laplace equation

- $[D P]_{p}$ "easy" if $f \in C^{0}(\partial \Omega) \cap L^{p}(\partial \Omega)$
- Take $f_{k} \in C^{0}(\partial \Omega) \cap L^{p}(\partial \Omega)$ so that $f_{k} \rightarrow f$ in L^{p}
- If

$$
\int_{\partial \Omega}\left|N\left[u_{k}\right]\right|^{p} \leq C \int_{\partial \Omega}\left|f_{k}\right|^{p}, \quad N[u](Q)=\sup _{\Gamma_{\alpha}(Q)}|u|
$$

Then by Maximum principle $u_{k} \rightarrow u$ in $W_{\text {loc }}^{1,2}(\Omega)$ and u solves $[D P]_{p}$.

For $f \in C^{0}(\partial \Omega) \cap L^{p}(\partial \Omega)$ find $u \in W^{1,2}(\Omega)$ with

$$
\left\{\begin{array}{l}
\Delta u \xlongequal{\mathrm{w}} 0, \quad \text { in } \Omega \\
u=f, \quad \text { on } \partial \Omega
\end{array}\right.
$$

and prove

$$
\int_{\partial \Omega}|N[u]|^{p} \leq C \int_{\partial \Omega}|f|^{p}, \quad \forall f \in C^{0}(\partial \Omega) \cap L^{p}(\partial \Omega)
$$

- In fact $u \in C^{0, \alpha}(\Omega)$ using the Harnack inequality
- Can we replace Δ with more general operators L ?

Note $\Delta=\operatorname{div}(/ \nabla) \&$ let $L=\operatorname{div}(A \nabla)$ where $A=A(X) \in \mathbb{R}^{n \times n}, X \in \Omega$.
As before

$$
\int_{\Omega} \operatorname{div}(A \nabla u) \varphi=\int_{\Omega} A \nabla u \cdot \nabla \varphi=: B_{L}[u, \varphi] .
$$

Note

$$
B_{\Delta}[u, u]=\int_{\Omega}|u|^{2}
$$

Need

$$
\frac{1}{C} \int_{\Omega}|u|^{2} \leq B_{L}[u, u] \leq C \int_{\Omega}|u|^{2}
$$

which follows if

$$
\frac{1}{C}|\xi|^{2} \leq A \xi \cdot \xi \leq C|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{n}, \text { a.e. } X \in \Omega
$$

The Laplace equation

Ellipticity

$L=\operatorname{div}(A \nabla)$ is elliptic if $\exists \lambda>0$ s.t.

$$
\lambda|\xi|^{2} \leq A \xi \cdot \xi \leq \lambda^{-1}|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{n} \text {, a.e. } X \in \Omega .
$$

- Thus $A(X) \xi \cdot \xi=1$ defines an ellipsoid in $\xi \in \mathbb{R}^{n}$ with

$$
\lambda \leq \text { the length of the semi-axi } \leq \lambda^{-1}
$$

- Note

$$
A \xi \cdot \xi=A^{s} \xi \cdot \xi, \quad A^{s}=\frac{1}{2}\left(A+A^{T}\right)
$$

So $A^{a}:=A-A^{s}$ free

Perturbation theory

To solve $[D P]_{p}$ for L we need it to be "close" to Δ

Dindos-Sätterqvist-Ulmer '22

- $\Omega \subset \mathbb{R}^{n}$ be bounded chord-arc domain.
- $L_{0}=\operatorname{div}\left(A_{0} \nabla\right)$ and $L_{1}=\operatorname{div}\left(A_{1} \nabla\right)$ elliptic with $\left\|A_{i}^{a}\right\|_{\text {BMO }} \leq \Lambda$.

$$
\exists r=r(n, \lambda, \Lambda) \in(1, \infty), \gamma=\gamma(n, \lambda, \Lambda)>0
$$

so that if

$$
\int_{T(\Delta)} \frac{\beta_{r}(Z)^{2}}{\delta(Z)} d Z \leq \gamma|\Delta|, \quad \beta_{r}(Z):=\left(\int_{B(Z, \delta(Z) / 2)}\left|A_{1}-A_{0}\right|^{r}\right)^{1 / r}
$$

then $[D P]_{p}$ for L_{0} solvable implies $[D P]_{p}$ solvable for L_{1},

Perturbation theory

Can think of

$$
\int_{T(\Delta)} \frac{\beta_{r}(Z)^{2}}{\delta(Z)} d Z \leq \gamma|\Delta|
$$

as

$$
\beta_{r}(Z) \sim \delta(Z)^{0+}
$$

Perturbation theory

- Let $L_{0}=\Delta$ and $L_{1}=L=\operatorname{div}(A \nabla)$.
- Suppose

$$
\int_{\partial \Omega}|N[u]|^{p} \leq C \int_{\partial \Omega}|f|^{p}, \quad \forall f \in C^{0}(\partial \Omega) \cap L^{p}(\partial \Omega)
$$

so that $[D P]_{p}$ solvable for Δ.

- $[D P]_{p}$ solvable for L if

$$
\beta_{r}(Z)=\left(\int_{B(Z, \delta(Z) / 2)}|A-I|^{r}\right)^{1 / r} \sim \delta(Z)^{0+}
$$

i.e. $|A(Z)-I| \sim \delta(Z)^{0+}$

Thanks for listening!

Preprint: https://arxiv.org/abs/2207.12076
Email: erik.satterqvist@ed.ac.uk

