The maths behind the music

Gemma Crowe PG Colloquium, 4th March 2022

Where it all began

Ancient Greece

- Pythagorean scale
- Ratios of intervals

Galileo

• Vibrations on strings

18th Century

Equal temperament

Modern connections

- Fractals
- Frieze patterns

Poly rhythms

2

3/13

イロト イヨト イヨト イヨト

Poly rhythms

3 against 2 poly rhythm

4 against 3 poly rhythm

イロン イ理 とく ヨン イヨン

2

Poly rhythms

3 against 2 poly rhythm

4 against 3 poly rhythm

イロン イ理 とく ヨン イヨン

2

Circle of 5ths

• • • • • • • • •

4/13

æ

Circle of 5ths

- Assign (C, C#, D, ..., B) = (0,1,..., 11)
- Multiply by 7 = (0, 7, 14, ..., 77)
- Apply mod 12 = (0, 7, 2, 9, ..., 10, 5)
- Reassign letters = (C, G, D, ..., $B\flat$, F)

Definition

A group is a set G equipped with a binary operation * such that the following hold:

- **Olympice:** For all $x, y \in G$, $x * y \in G$
- **2** Associativity: For all $x, y, z \in G$, (x * y) * z = x * (y * z)
- Identity: There exists a unique element e ∈ G, called the *identity* element, such that for all x ∈ G, x * e = e * x = x
- **③** Inverses: For all $x \in G$, there exists $x^{-1} \in G$ such that $x * x^{-1} = x^{-1} * x = e$

Definition

A group is a set G equipped with a binary operation * such that the following hold:

- **1** Closure: For all $x, y \in G$, $x * y \in G$
- **2** Associativity: For all $x, y, z \in G$, (x * y) * z = x * (y * z)
- Identity: There exists a unique element e ∈ G, called the *identity* element, such that for all x ∈ G, x * e = e * x = x

④ Inverses: For all $x \in G$, there exists $x^{-1} \in G$ such that $x * x^{-1} = x^{-1} * x = e$

Example 1: $(\mathbb{Z}, +)$. Example 2: Symmetries of regular polygons \Rightarrow *Dihedral group*. Example 3: $(\mathbb{Z}/n\mathbb{Z}, +)$, for example $\mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}$

< □ > < 同 > < 回 > < 回 > < 回 >

Γ	Note	С	C♯/D♭	D	$D_{\sharp}/E\flat$	E	F	F♯/G♭	G	$G_{\sharp}/A\flat$	Α	A∦/ <i>B</i> ♭	В
	Label	0	1	2	3	4	5	6	7	8	9	10	11
	Chromatic scale $\cong \mathbb{Z}/12\mathbb{Z}$												

2

イロト イヨト イヨト イヨト

Note	C	C♯/D♭	D	$D_{\sharp}/E\flat$	E	F	$F_{\sharp}/G\flat$	G	G♯/A♭	A	A∦/ <i>B</i> ♭	В
Label	0	1	2	3	4	5	6	7	8	9	10	11
Chromatic scale $\cong \mathbb{Z}/12\mathbb{Z}$												

3-note chords

 $\begin{array}{l} \mbox{Major} = (\mbox{Root}, \mbox{ Major} \ 3 \mbox{rd}, \mbox{Perfect 5th}) \\ \mbox{Minor} = (\mbox{Root}, \mbox{Minor} \ 3 \mbox{rd}, \mbox{Perfect 5th}) \\ \mbox{Let} \ \ensuremath{\mathcal{M}} \ \mbox{denote the set of all possible Major and Minor Chords}. \end{array}$

$$\mathcal{M} = \{ (x, x+3, x+7), (y, y+4, y+7) \mid x, y \in \mathbb{Z}/12\mathbb{Z} \}$$

Example: C Major chord = (C, E, G) $\Leftrightarrow (0, 4, 7) \in \mathcal{M}$

Minor chords = $(a, b, c) \in \mathcal{M}$, Major chords = $(A, B, C) \in \mathcal{M}$.

Image: A matrix

æ

Minor chords = $(a, b, c) \in \mathcal{M}$, Major chords = $(A, B, C) \in \mathcal{M}$.

Examples:

$$C \text{ Maj} = (C,E,G) = (0,4,7) \xrightarrow{\mathcal{P}} (0,3,7) = (C,E\flat,G) = C \text{ Min}$$

$$F \text{ Maj} = (F,A,C) = (5,9,0) \xrightarrow{\mathcal{L}} (4,9,0) = (A,C,E) = A \text{ Min}$$

$$A \text{ Min} = (A,C,E) = (9,0,4) \xrightarrow{\mathcal{R}} (0,4,7) = (C,E,G) = C \text{ Maj}$$

Image: Image:

글 > 글

- E - N

< □ > < □ > <

æ

Theorem

The set $G = \langle \mathcal{P}, \mathcal{L}, \mathcal{R} \rangle$ form a group.

Gemma Crowe

< ≧ ▶ < ≧ ▶March 2022

< 67 ▶

୬ < ୯ 8 / 13

æ

Definition

Let $x = (a, b, c) \in \mathcal{M}$. A transposition is a function

$$T_n : \mathcal{M} \to \mathcal{M}$$

 $x \mapsto x + n \mod 12 = (a + n, b + n, c + n)$

An inversion is a function

$$I_n : \mathcal{M} \to \mathcal{M}$$
$$x \mapsto -x + n \text{ mod } 12 = (-a + n, -b + n, -c + n)$$

Here $0 \le n < 12$.

э

A (10) A (10)

Figure 1: The musical clock.

~	<u>~</u>
L-emma	I ROMAG
Gennina	

< 47 ▶

æ

Figure 1: The musical clock.

Theorem

 $\langle T_1, I_0 \rangle \cong D_{12}$

Gemma Crowe	PG Colloquium	March 2022

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

Figure 8: Illustration of commutativity of T_1 and L.

$R \longmapsto I_0$	$R \circ (LR)^4 \longmapsto I_8$	$R \circ (LR)^8 \longmapsto I_4$
$LR \longmapsto T_1$	$(LR)^5 \longrightarrow T_5$	$(LR)^9 \longmapsto T_9$
$R \circ (LR) \longmapsto I_{11}$	$R \circ (LR)^5 \longmapsto I_7$	$R \circ (LR)^9 \longmapsto I_3$
$(LR)^2 \longrightarrow T_2$	$(LR)^6 \longrightarrow T_6$	$(LR)^{10} \longrightarrow T_{10}$
$R \circ (LR)^2 \longmapsto I_{10}$	$R \circ (LR)^6 \longmapsto I_6$	$R \circ (LR)^{10} \longmapsto I_2$
$(LR)^3 \longrightarrow T_3$	$(LR)^7 \longrightarrow T_7$	$(LR)^{11} \longrightarrow T_{11}$
$R \circ (LR)^3 \longmapsto I_9$	$R \circ (LR)^7 \longmapsto I_5$	$R \circ (LR)^{11} \longmapsto I_1$
$(LR)^4 \longrightarrow T_4$	$(LR)^8 \longrightarrow T_8$	$(LR)^0 \longmapsto T_0$

Table 4.3: The isomorphism ϕ : PLR \mapsto TI.

æ

Figure 8: Illustration of commutativity of T_1 and L.

$R \longmapsto I_0$	$R \circ (LR)^4 \longmapsto I_8$	$R \circ (LR)^8 \longmapsto I_4$
$LR \longmapsto T_1$	$(LR)^5 \longrightarrow T_5$	$(LR)^9 \longrightarrow T_9$
$R \circ (LR) \longmapsto I_{11}$	$R \circ (LR)^5 \longmapsto I_7$	$R \circ (LR)^9 \longmapsto I_3$
$(LR)^2 \longrightarrow T_2$	$(LR)^6 \longrightarrow T_6$	$(LR)^{10} \longrightarrow T_{10}$
$R \circ (LR)^2 \longmapsto I_{10}$	$R \circ (LR)^6 \longmapsto I_6$	$R \circ (LR)^{10} \longmapsto I_2$
$(LR)^3 \longrightarrow T_3$	$(LR)^7 \longrightarrow T_7$	$(LR)^{11} \longrightarrow T_{11}$
$R \circ (LR)^3 \longmapsto I_9$	$R \circ (LR)^7 \longmapsto I_5$	$R \circ (LR)^{11} \longmapsto I_1$
$(LR)^4 \longrightarrow T_4$	$(LR)^8 \longrightarrow T_8$	$(LR)^0 \longrightarrow T_0$

Table 4.3: The isomorphism $\phi : PLR \mapsto TI$.

$\langle \mathcal{P}, \mathcal{L}, \mathcal{R} \rangle \cong \langle T_1, I_0 \rangle \cong D_{12}$

Gemma Crowe

Theorem

PG Colloquium

March 2022

References

Flor Aceff-Sánchez, Octavio A Agustín-Aquino, Janine Du Plessis, Emilio Lluis-Puebla, Janine Du Plessis, and Mariana Montiel.

An Introduction to Group Theory with applications to Mathematical Music Theory.

Serie: Textos, 15, 2012.

Alissa S. Crans, Thomas M. Fiore, and Ramon Satyendra. Musical actions of dihedral groups.

American Mathematical Monthly, 116(6):479-495, 2009.

John Fauvel, Raymond Flood, and Robin Wilson. Music and Mathematics: From Pythagoras to Fractals.

2003.

Thank you for listening! Any questions?

"Music is the arithmetic of sounds as optics is the geometry of light" Claude Debussy