The maths behind the music

Gemma Crowe

PG Colloquium, 4th March 2022

Where it all began

Ancient Greece

- Pythagorean scale
- Ratios of intervals

Galileo

- Vibrations on strings

18th Century

- Equal temperament

Modern connections

- Fractals
- Frieze patterns

Divisions of a Vibrating String

Ratio
$1 / 1$
Interval
unison

$2 / 1$
P8
c $7: 0$

$3 / 2$
P5
P4

Poly rhythms

Poly rhythms

3 against 2 poly rhythm

4 against 3 poly rhythm

Poly rhythms

3 against 2 poly rhythm

4 against 3 poly rhythm

Circle of 5ths

Circle of 5ths

- Assign (C, C\#, D, ..., B) $=$ (0,1,..., 11)
- Multiply by $7=(0,7,14, \ldots$, 77)
- Apply $\bmod 12=(0,7,2,9, \ldots$, 10, 5)
- Reassign letters $=(\mathrm{C}, \mathrm{G}, \mathrm{D}, \ldots$, Bb, F)

Algebra

Definition

A group is a set G equipped with a binary operation * such that the following hold:
(1) Closure: For all $x, y \in G, x * y \in G$
(2) Associativity: For all $x, y, z \in G,(x * y) * z=x *(y * z)$
(3) Identity: There exists a unique element $e \in G$, called the identity element, such that for all $x \in G, x * e=e * x=x$
(4) Inverses: For all $x \in G$, there exists $x^{-1} \in G$ such that

$$
x * x^{-1}=x^{-1} * x=e
$$

Algebra

Definition

A group is a set G equipped with a binary operation * such that the following hold:
(1) Closure: For all $x, y \in G, x * y \in G$
(2) Associativity: For all $x, y, z \in G,(x * y) * z=x *(y * z)$
(3) Identity: There exists a unique element $e \in G$, called the identity element, such that for all $x \in G, x * e=e * x=x$
(4) Inverses: For all $x \in G$, there exists $x^{-1} \in G$ such that

$$
x * x^{-1}=x^{-1} * x=e
$$

Example 1: $(\mathbb{Z},+)$.
Example 2: Symmetries of regular polygons \Rightarrow Dihedral group.
Example 3: $(\mathbb{Z} / n \mathbb{Z},+)$, for example $\mathbb{Z} / 4 \mathbb{Z}=\{0,1,2,3\}$

Music connections

Note	C	$\mathrm{C}_{\sharp} / D_{b}$	D	$\mathrm{D}_{\sharp} / E_{b}$	E	F	$\mathrm{F}_{\sharp} / G_{b}$	G	$\mathrm{G}_{\sharp} / A_{b}$	A	$\mathrm{~A}_{\sharp} / B_{b}$	B
Label	0	1	2	3	4	5	6	7	8	9	10	11

Chromatic scale $\cong \mathbb{Z} / 12 \mathbb{Z}$

Music connections

Note	C	$\mathrm{C}_{\sharp} / D_{b}$	D	$\mathrm{D}_{\sharp} / E_{b}$	E	F	$\mathrm{F}_{\sharp} / G_{b}$	G	$\mathrm{G}_{\sharp} / A_{b}$	A	$\mathrm{~A}_{\sharp} / B_{b}$	B
Label	0	1	2	3	4	5	6	7	8	9	10	11

Chromatic scale $\cong \mathbb{Z} / 12 \mathbb{Z}$

3-note chords

Major $=($ Root, Major 3rd, Perfect 5th $)$
Minor $=($ Root, Minor 3rd, Perfect 5th $)$
Let \mathcal{M} denote the set of all possible Major and Minor Chords.

$$
\mathcal{M}=\{(x, x+3, x+7),(y, y+4, y+7) \mid x, y \in \mathbb{Z} / 12 \mathbb{Z}\}
$$

Example: C Major chord $=(\mathrm{C}, \mathrm{E}, \mathrm{G}) \Leftrightarrow(0,4,7) \in \mathcal{M}$

The $\mathcal{P} \mathcal{L R}$ Group

Minor chords $=(a, b, c) \in \mathcal{M}$, Major chords $=(A, B, C) \in \mathcal{M}$.

Parallel	Leading note	Relative
Same letter, opposite parity	Semitone below	Opposite parity, same key signature
$\mathcal{P}: \mathcal{M} \rightarrow \mathcal{M}$	$\mathcal{L}: \mathcal{M} \rightarrow \mathcal{M}$	$\mathcal{R}: \mathcal{M} \rightarrow \mathcal{M}$
$(a, b, c) \mapsto(a, b+1, c)$	$(a, b, c) \mapsto(c+1, a, b)$	$(a, b, c) \mapsto(b, c, a-2)$
$(A, B, C) \mapsto(A, B-1, C)$	$(A, B, C) \mapsto(B, C, A-1)$	$(A, B, C) \mapsto(C+2, A, B)$

The $\mathcal{P} \mathcal{L R}$ Group

Minor chords $=(a, b, c) \in \mathcal{M}$, Major chords $=(A, B, C) \in \mathcal{M}$.

Parallel	Leading note	Relative
Same letter, opposite parity	Semitone below	Opposite parity, same key signature
$\mathcal{P}: \mathcal{M} \rightarrow \mathcal{M}$	$\mathcal{L}: \mathcal{M} \rightarrow \mathcal{M}$	$\mathcal{R}: \mathcal{M} \rightarrow \mathcal{M}$
$(a, b, c) \mapsto(a, b+1, c)$	$(a, b, c) \mapsto(c+1, a, b)$	$(a, b, c) \mapsto(b, c, a-2)$
$(A, B, C) \mapsto(A, B-1, C)$	$(A, B, C) \mapsto(B, C, A-1)$	$(A, B, C) \mapsto(C+2, A, B)$

Examples:

C Maj $=(C, E, G)=(0,4,7) \xrightarrow{\mathcal{P}}(0,3,7)=\left(C, E_{b}, G\right)=C$ Min F Maj $=(F, A, C)=(5,9,0) \xrightarrow{\mathcal{L}}(4,9,0)=(A, C, E)=A$ Min
A Min $=(A, C, E)=(9,0,4) \xrightarrow{\mathcal{R}}(0,4,7)=(C, E, G)=C$ Maj

The $\mathcal{P L R}$ Group

The $\mathcal{P} \mathcal{L} \mathcal{R}$ Group

Theorem

The set $G=\langle\mathcal{P}, \mathcal{L}, \mathcal{R}\rangle$ form a group.

Transpositions and Inversions

Definition

Let $x=(a, b, c) \in \mathcal{M}$. A transposition is a function

$$
\begin{aligned}
T_{n}: \mathcal{M} & \rightarrow \mathcal{M} \\
x & \mapsto x+n \bmod 12=(a+n, b+n, c+n)
\end{aligned}
$$

An inversion is a function

$$
\begin{aligned}
I_{n}: \mathcal{M} & \rightarrow \mathcal{M} \\
x & \mapsto-x+n \bmod 12=(-a+n,-b+n,-c+n)
\end{aligned}
$$

Here $0 \leq n<12$.

Transpositions and Inversions

Figure 1: The musical clock.

Transpositions and Inversions

Figure 1: The musical clock.

Theorem

$$
\left\langle T_{1}, I_{0}\right\rangle \cong D_{12}
$$

Transpositions and Inversions

$L\rceil$

Figure 8: Illustration of commutativity of T_{1} and L.

$R \longmapsto I_{0}$	$R \circ(L R)^{4} \longmapsto I_{8}$	$R \circ(L R)^{8} \longmapsto I_{4}$
$L R \longmapsto T_{1}$	$(L R)^{5} \longmapsto T_{5}$	$(L R)^{9} \longmapsto T_{9}$
$R \circ(L R) \longmapsto I_{11}$	$R \circ(L R)^{5} \longmapsto I_{7}$	$R \circ(L R)^{9} \longmapsto I_{3}$
$(L R)^{2} \longmapsto T_{2}$	$(L R)^{6} \longmapsto T_{6}$	$(L R)^{10} \longmapsto T_{10}$
$R \circ(L R)^{2} \longmapsto I_{10}$	$R \circ(L R)^{6} \longmapsto I_{6}$	$R \circ(L R)^{10} \longmapsto I_{2}$
$(L R)^{3} \longmapsto T_{3}$	$(L R)^{7} \longmapsto T_{7}$	$(L R)^{11} \longmapsto T_{11}$
$R \circ(L R)^{3} \longmapsto I_{9}$	$R \circ(L R)^{7} \longmapsto I_{5}$	$R \circ(L R)^{11} \longmapsto I_{1}$
$(L R)^{4} \longmapsto T_{4}$	$(L R)^{8} \longmapsto T_{8}$	$(L R)^{0} \longmapsto T_{0}$

Table 4.3: The isomorphism $\phi: \mathrm{PLR} \mapsto \mathrm{TI}$.

Transpositions and Inversions

$R \longmapsto I_{0}$	$R \circ(L R)^{4} \longmapsto I_{8}$	$R \circ(L R)^{8} \longmapsto I_{4}$
$L R \longmapsto T_{1}$	$(L R)^{5} \longmapsto T_{5}$	$(L R)^{9} \longmapsto T_{9}$
$R \circ(L R) \longmapsto I_{11}$	$R \circ(L R)^{5} \longmapsto I_{7}$	$R \circ(L R)^{9} \longmapsto I_{3}$
$(L R)^{2} \longmapsto T_{2}$	$(L R)^{6} \longmapsto T_{6}$	$(L R)^{10} \longmapsto T_{10}$
$R \circ(L R)^{2} \longmapsto I_{10}$	$R \circ(L R)^{6} \longmapsto I_{6}$	$R \circ(L R)^{10} \longmapsto I_{2}$
$(L R)^{3} \longmapsto T_{3}$	$(L R)^{7} \longmapsto T_{7}$	$(L R)^{11} \longmapsto T_{11}$
$R \circ(L R)^{3} \longmapsto I_{9}$	$R \circ(L R)^{7} \longmapsto I_{5}$	$R \circ(L R)^{11} \longmapsto I_{1}$
$(L R)^{4} \longmapsto T_{4}$	$(L R)^{8} \longmapsto T_{8}$	$(L R)^{0} \longmapsto T_{0}$

Table 4.3: The isomorphism $\phi: \mathrm{PLR} \mapsto \mathrm{TI}$.

Theorem

$$
\langle\mathcal{P}, \mathcal{L}, \mathcal{R}\rangle \cong\left\langle T_{1}, I_{0}\right\rangle \cong D_{12}
$$

References

嗇 Flor Aceff-Sánchez, Octavio A Agustín-Aquino, Janine Du Plessis, Emilio Lluis-Puebla, Janine Du Plessis, and Mariana Montiel.

An Introduction to Group Theory with applications to Mathematical Music Theory.

Serie: Textos, 15, 2012.
Elissa S. Crans, Thomas M. Fiore, and Ramon Satyendra.
Musical actions of dihedral groups.
American Mathematical Monthly, 116(6):479-495, 2009.
John Fauvel, Raymond Flood, and Robin Wilson.
Music and Mathematics: From Pythagoras to Fractals.
2003.

Thank you for listening! Any questions?

"Music is the arithmetic of sounds as optics is the geometry of light" Claude Debussy

