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Research Goal



Research Goal

We aim to quantify product cannibalisation for existing products
in an apparel wholesale data set.

Product cannibalisation refers to the decrease in sales of
one product due to (the introduction of) a closely related
product. [Copulsky, 1976]

The current focus is on inference to detect and understand
product cannibalisation for products that already have a sales
history.
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This Talk

Three questions you will be able to answer after this talk:
1. What is a Hawkes Process?
2. Why do we reparametrise the Hawkes Process?
3. How can a Hawkes Process be used to describe product

cannibalisation?
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Prerequisites



Bayesian Statistics:
Parameter as a Matter of Interest

Frequentist Statistics: t-Test, F-Test, p-values...
Bayesian Statistics: parameters now have a distribution!
Prior → Data → Posterior

(a) Prior

(b) Data

(c) Posterior
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Point Processes

Data: event times (plus additional covariates)
Let N(t) be the number of observed events from 0 to t.
Homogeneous (λ constant) Poisson point process:

P[N(t) = N ] =
(λt)N

N !
e−λt (1)

E[N(t)] = λt (2)

Inhomogeneous (λ(t) variable) Poisson point process:

p(t1 . . . tN ) =

N∏
i=1

λ (ti) e
−

∫∞
0 λ(z) dz (3)

E[N(t)] =

∫ t

0
λ(z) dz (4)

[Daley and Vere-Jones, 2003]
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Univariate Hawkes Process

Hawkes processes [Hawkes, 1971] are a class of point processes
that are used to model event data when the events can occur in
clusters or bursts. They are defined on the interval [0, T ] with
conditional intensity function:

λ(t|θ) = λ0(t) +
∑
i:t>ti

ν(t− ti) (5)

Here, λ0(t) can capture seasonality and underlying trends, but
we use λ0(t) = µ, and ν(t− ti) = K βe−β(t−ti) the self-excitement.

Figure 2: Intensity function with self exciting kernel [Rizoiu et al., 2017]
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Model



Multivariate Hawkes Process

Assume that there are M dimensions with data
Y1 = (t1 1 . . . t1N1) . . . YM = (tM 1 . . . tM NM

). At time t the intensity
in dimension i is defined as the sum of the background rate µi(t)
and contributions from all dimensions:

λi(t) =

µi(t) +
M∑
j=1

∑
l:t>tj l

Kji gji(t− tj l)


+

(6)

We assume the following form for the influence for all i, j:
gij(x) > 0 for x > 0 and

∫∞
0 gij(x) dx = 1. Here, each Kij < 1, and

we write them as matrix K = {Kij} where i, j = 1 . . .M .

7 / 20



Toy Example: Network-Like Visualisation

For three dimensions (A,B,C)
we can estimate the parameters
K in a variety of ways, e.g.
Maximum Likelihood, Bayesian
Posterior Mean. The resulting
estimates can be visualised in a
network-like structure.

K =

 +0.5 +0.75 .
. . −0.25
. . +0.25

 Figure 3: Graph example of the
parameters K for three products
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Local and Global Influence

The entry Kij describe how
many direct events an event in i
‘triggers/inhibits’ in j. However,
this does not take the global
view into account.

Therefore, it could be of interest
to look at the marginal effects
K∗ as they summarise the
influence across the whole
network.

Figure 4: Local influences

Figure 5: Global influences
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Mathematically Convenient K∗

The number of events in a Hawkes Process can ‘explode’ when K
gets too large.

When we add dimensions, the entries of K need to become
smaller to retain stability. In contrast, K∗ are
dimension-independent (because they sum over all ‘paths’).
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Reparametrise The Model

We therefore reparametrise the model in terms of K∗, the
marginal influences. At time t the intensity in dimension i is
defined as the sum of the background rate µi(t) and
contributions from all dimensions:

λi(t) =

µi(t) +

M∑
j=1

∑
l:t>tj l

{f(K∗)}ji gji(t− tj l)


+

(7)

where f(X) = I − (X− I)−1.
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"Under the Hood"

To implement this model we needed to overcome a few
challenges:

Ensuring a non-negative intensity → link function
Integrating the intensity → numerical approximation
Checking for stability → new criterion

All methodological details can be found in the mathematical
draft on ArXiv [Deutsch and Ross, 2022].
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Data



Approach

We use a multivariate Hawkes Process where each product
represents one dimension. This allows us to estimate the
‘influence’ Kij from an event (sale) of one product i onto each
product j = 1 . . .M .

A positive influence Kij > 0 is called excitation, a negative
influence Kij < 0 is referred to as inhibition. The latter is
interpreted as product cannibalisation.
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Model Overview

We fit the following multivariate Hawkes process in a Bayesian
manner. The intensity in dimension i is

λi(t) =

µi(t) +

M∑
j=1

∑
l:t>tj l

{f(K∗)}ji gji(t− tj l)


+

For µi(t) we choose a step function with pre-defined change
points where each product has an on-season and off-season
background rate. Their priors are independent:

µi, on ∼ U(0, 10) for i = 1 . . .M

µi, off ∼ U(0, 10) for i = 1 . . .M
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Model Overview

For the influence kernels we utilise the popular exponential
kernel gij(x) = βij exp (−βij x). Here, we assume that all
βii = βdiag and βij = βoff when i ̸= j.

βdiag ∼ U(0, 3)
βoff ∼ U(0, 3)

In line with our previous arguments we place priors on the
entries of K∗. The estimation (using Stan) is carried out both
using Normal priors

K∗
ij ∼ N (0, 1) for i, j = 1 . . .M

and sparsity-inducing horseshoe priors

ξij ∼ Cauchy(0, 1)
K∗

ij ∼ N (0, ξij) for i, j = 1 . . .M
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Product Overview

Product 1 Product 2 Product 3 Product 4
Main Colour black black white white
Branding white minimal minimal green
Label none known known known
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Figure 6: Observations
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Posterior
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Figure 7: Posterior density estimates of K∗ (excitation/inhibition
parameter), using independent Normal (black) and horseshoe (grey)
priors.
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Interpretation

Most products do not cannibalise each other as the
posterior mass is mostly above zero.
However, Product 2 and Product 3 display product
cannibalisation in both directions (K∗

23 < 0 and K∗
32 < 0).

Product 2 and 3 come from the same label. Maybe therefore
wholesalers make the decision to only order one of the two
due to their similar branding and label.
Product 4 has the most sale events. It differs from the other
products as it is the only one featuring a colour (green
branding on the heel). This very popular style seems
unaffected by product cannibalisation from other products.
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Summary



This Talk

Three questions you can now answer:
1. What is a Hawkes Process?
2. Why do we reparametrise the Hawkes Process?
3. How can a Hawkes Process be used to describe product

cannibalisation?
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Contributions

Methodological Advances
to make the implementation of a multivariate Hawkes Process
with inhibition easier.
Formalisation of Product Cannibalisation
as a mathematical concept that can be estimated, monitored,
and predicted.

[Deutsch and Ross, 2022]
arxiv.org/abs/2201.05009
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