UNCOVERING PRODUCT CANNIBALISATION USING MULTIVARIATE HAWKES PROCESSES

ISABELLA DEUTSCH

University of Edinburgh School of Mathematics

MARCH 2022

THE UNIVERSITY of EDINBURGH

> The Alan Turing Institute

2 Prerequisites

3 Model

4 Data

RESEARCH GOAL

We aim to quantify product cannibalisation for existing products in an apparel wholesale data set.

Product cannibalisation refers to the decrease in sales of one product due to (the introduction of) a closely related product. [Copulsky, 1976]

The current focus is on inference to detect and understand product cannibalisation for products that already have a sales history. Three questions you will be able to answer after this talk:

- 1. What is a Hawkes Process?
- 2. Why do we reparametrise the Hawkes Process?
- 3. How can a Hawkes Process be used to describe product cannibalisation?

PREREQUISITES

BAYESIAN STATISTICS: PARAMETER AS A MATTER OF INTEREST

Frequentist Statistics: t-Test, F-Test, p-values... Bayesian Statistics: parameters now have a distribution!

 $\textbf{Prior} \rightarrow \textbf{Data} \rightarrow \textbf{Posterior}$

POINT PROCESSES

Data: event times (plus additional covariates) Let N(t) be the number of observed events from 0 to t. Homogeneous (λ constant) Poisson point process:

$$\mathbb{P}[N(t) = N] = \frac{(\lambda t)^N}{N!} e^{-\lambda t}$$

$$\mathbb{E}[N(t)] = \lambda t$$
(1)
(2)

Inhomogeneous ($\lambda(t)$ variable) Poisson point process:

$$p(t_1 \dots t_N) = \prod_{i=1}^N \lambda(t_i) e^{-\int_0^\infty \lambda(z) dz}$$
(3)
$$\mathbb{E}[N(t)] = \int_0^t \lambda(z) dz$$
(4)

[Daley and Vere-Jones, 2003]

UNIVARIATE HAWKES PROCESS

Hawkes processes [Hawkes, 1971] are a class of point processes that are used to model event data when the events can occur in clusters or bursts. They are defined on the interval [0, T] with conditional intensity function:

$$\lambda(t|\theta) = \lambda_0(t) + \sum_{i:t>t_i} \nu(t-t_i)$$
(5)

Here, $\lambda_0(t)$ can capture seasonality and underlying trends, but we use $\lambda_0(t) = \mu$, and $\nu(t - t_i) = K \beta e^{-\beta(t - t_i)}$ the self-excitement.

Figure 2: Intensity function with self exciting kernel [Rizoiu et al., 2017]

Assume that there are M dimensions with data

 $Y_1 = (t_{11} \dots t_{1N_1}) \dots Y_M = (t_{M1} \dots t_{MN_M})$. At time t the intensity in dimension i is defined as the sum of the background rate $\mu_i(t)$ and contributions from all dimensions:

$$\lambda_i(t) = \left[\mu_i(t) + \sum_{j=1}^M \sum_{l:t>t_j \, l} K_{ji} \, g_{ji}(t-t_j \, l) \right]_+ \tag{6}$$

We assume the following form for the influence for all i, j: $g_{ij}(x) > 0$ for x > 0 and $\int_0^\infty g_{ij}(x) dx = 1$. Here, each $K_{ij} < 1$, and we write them as matrix $\mathbf{K} = \{K_{ij}\}$ where $i, j = 1 \dots M$.

TOY EXAMPLE: NETWORK-LIKE VISUALISATION

For three dimensions (A, B, C)we can estimate the parameters K in a variety of ways, e.g. Maximum Likelihood, Bayesian Posterior Mean. The resulting estimates can be visualised in a network-like structure.

$$\mathbf{K} = \begin{bmatrix} +0.5 & +0.75 & . \\ . & . & -0.25 \\ . & . & +0.25 \end{bmatrix}$$

Figure 3: Graph example of the parameters **K** for three products

LOCAL AND GLOBAL INFLUENCE

The entry K_{ij} describe how many direct events an event in i'triggers/inhibits' in j. However, this does not take the global view into account.

Therefore, it could be of interest to look at the marginal effects K^* as they summarise the influence across the whole network.

Figure 4: Local influences

Figure 5: Global influences

The number of events in a Hawkes Process can 'explode' when ${\bf K}$ gets too large.

When we add dimensions, the entries of \mathbf{K} need to become smaller to retain stability. In contrast, \mathbf{K}^* are dimension-independent (because they sum over all 'paths').

We therefore reparametrise the model in terms of \mathbf{K}^* , the marginal influences. At time t the intensity in dimension i is defined as the sum of the background rate $\mu_i(t)$ and contributions from all dimensions:

$$\lambda_i(t) = \left[\mu_i(t) + \sum_{j=1}^M \sum_{l:t>t_j \, l} \left\{ f(\mathbf{K}^*) \right\}_{ji} \, g_{ji}(t-t_j \, l) \right]_+$$
(7)

where $f(X) = I - (X - I)^{-1}$.

To implement this model we needed to overcome a few challenges:

- \blacksquare Ensuring a non-negative intensity \rightarrow link function
- Integrating the intensity \rightarrow numerical approximation
- \blacksquare Checking for stability \rightarrow new criterion

All methodological details can be found in the mathematical draft on ArXiv [Deutsch and Ross, 2022].

We use a multivariate Hawkes Process where each product represents one dimension. This allows us to estimate the 'influence' K_{ij} from an event (sale) of one product i onto each product $j = 1 \dots M$.

A positive influence $K_{ij} > 0$ is called excitation, a negative influence $K_{ij} < 0$ is referred to as inhibition. The latter is interpreted as product cannibalisation.

We fit the following multivariate Hawkes process in a Bayesian manner. The intensity in dimension i is

$$\lambda_i(t) = \left[\mu_i(t) + \sum_{j=1}^M \sum_{l:t>t_j \, l} \left\{ f(\mathbf{K}^*) \right\}_{ji} \, g_{ji}(t-t_j \, l) \right]_+$$

For $\mu_i(t)$ we choose a step function with pre-defined change points where each product has an on-season and off-season background rate. Their priors are independent:

$\mu_{i, on} \sim \mathcal{U}(0, 10)$	for $i = 1 \dots M$
$\mu_{i, \text{ off}} \sim \mathcal{U}(0, 10)$	for $i = 1 \dots M$

MODEL OVERVIEW

For the influence kernels we utilise the popular exponential kernel $g_{ij}(x) = \beta_{ij} \exp(-\beta_{ij} x)$. Here, we assume that all $\beta_{ii} = \beta_{\text{diag}}$ and $\beta_{ij} = \beta_{\text{off}}$ when $i \neq j$.

$$eta_{\mathsf{diag}} \sim \mathcal{U}(0,3)$$

 $eta_{\mathsf{off}} \sim \mathcal{U}(0,3)$

In line with our previous arguments we place priors on the entries of \mathbf{K}^* . The estimation (using Stan) is carried out both using Normal priors

$$K_{ij}^* \sim \mathcal{N}(0, 1)$$
 for $i, j = 1 \dots M$

and sparsity-inducing horseshoe priors

$$\begin{split} \xi_{ij} &\sim \mathsf{Cauchy}(0,1) \\ K^*_{ij} &\sim \mathcal{N}(0,\xi_{ij}) \end{split} \qquad \qquad \text{for } i,j=1\ldots M \end{split}$$

PRODUCT OVERVIEW

	Product 1	Product 2	Product 3	Product 4
Main Colour	black	black	white	white
Branding	white	minimal	minimal	green
Label	none	known	known	known

POSTERIOR

Figure 7: Posterior density estimates of **K**^{*} (excitation/inhibition parameter), using independent Normal (black) and horseshoe (grey) priors.

- Most products do not cannibalise each other as the posterior mass is mostly above zero.
- However, Product 2 and Product 3 display product cannibalisation in both directions ($K_{23}^* < 0$ and $K_{32}^* < 0$). Product 2 and 3 come from the same label. Maybe therefore wholesalers make the decision to only order one of the two due to their similar branding and label.
- Product 4 has the most sale events. It differs from the other products as it is the only one featuring a colour (green branding on the heel). This very popular style seems unaffected by product cannibalisation from other products.

Three questions you can now answer:

- 1. What is a Hawkes Process?
- 2. Why do we reparametrise the Hawkes Process?
- 3. How can a Hawkes Process be used to describe product cannibalisation?

Methodological Advances

to make the implementation of a multivariate Hawkes Process with inhibition easier.

Formalisation of Product Cannibalisation

as a mathematical concept that can be estimated, monitored, and predicted.

[Deutsch and Ross, 2022] arxiv.org/abs/2201.05009 isabella.deutsch@ed.ac.uk
 Isabelladeutsch.com
 ØBayesianBella

REFERENCES I

- COPULSKY, W. (1976).
 CANNIBALISM IN THE MARKETPLACE. Journal of Marketing, 40(4):103–105.
- Daley, D. J. and Vere-Jones, D. (2003).
 An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods.

Probability and Its Applications, An Introduction to the Theory of Point Processes. Springer-Verlag, New York, NY, 2 edition.

▶ DEUTSCH, I. AND ROSS, G. J. (2022).

BAYESIAN ESTIMATION OF MULTIVARIATE HAWKES PROCESSES WITH INHIBITION AND SPARSITY.

arXiv:2201.05009 [stat].

arXiv: 2201.05009.

► HAWKES, A. G. (1971).

SPECTRA OF SOME SELF-EXCITING AND MUTUALLY EXCITING POINT PROCESSES. *Biometrika*, 58(1):83–90. RIZOIU, M.-A., LEE, Y., MISHRA, S., AND XIE, L. (2017).
 A TUTORIAL ON HAWKES PROCESSES FOR EVENTS IN SOCIAL MEDIA. arXiv. arXiv: 1708.06401.