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What is a knot?
Teaser

Real life example

simulation and graphics from [YSC21].
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What is a knot?
Informal: A knot Σ ⊂ R3 is a closed line without self-intersection.

Graphics taken from [KSSvdM21]
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What is a knot?
How do we describe knots?

A introduction to knots can be found in [BZH13].

Definition: Knots as embeddings
A knot is an topological embedding γ : S1 → R3, i. e. γ : S1 → γ(S1) is
a homeomorphism.

Definition: Domain of knot energies of tangent-point-type
The domain of tangent-point-type energies is given by
C := {γ ∈ C0,1(R/Z,R3) | |γ′| > 0 a. e.}.

Remark: We intentionally allow self-intersections at this point. But if we
restrict to injective curves, we get topological embeddings.
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Knot energies of tangent-point-type
The tangent-point radius

Graphics created by Henrik Schumacher
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Knot energies of tangent-point-type
The tangent-point radius

Consider the domain C = {γ ∈ C0,1(R/Z,R3) | |γ′| > 0 a.e.}.

Definition: Tangent-point radius (cf. [GM99])

Let γ ∈ C. Further let u ∈ R/Z and w ∈ [− 1
2 ,

1
2 ].

If γ′(u) exists, γ′(u) 6= 0 and γ(u + w) /∈ γ(u) + Rγ′(u), then the
tangent-point radius rtp[γ](u, u + w) is defined as the radius of the
unique circle which has the these properties

1 γ(u) and γ(u + w) lie on the circle.
2 The circle is tangential to γ′(u) in γ(u).

Otherwise, it is set to infinity.

Remark: For fixed u ∈ R/Z and w ∈ [− 1
2 ,

1
2 ], the radii rtp[γ](u, u + w)

and rtp[γ](u + w , u) are possibly different.
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Knot energies of tangent-point-type
Definition: Tangent-point energy

Definition: tangent-point energy TPp (cf. [GM99])

Let p > 0. The tangent-point energy TPp is defined by

TPp : C → R≥0 ∪ {∞},

γ 7→ 2−p ·
∫

R/Z

∫ 1
2

− 1
2

(
1

rtp[γ](u, u + w)

)p

|γ′(u)| · |γ′(u + w)|dw du.
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Knot energies of tangent-point-type
The tangent-point radius

Lemma: Expressions for the tangent-point radius
Let γ ∈ C. Further, let u ∈ R/Z and w ∈ (− 1

2 ,
1
2 ). Then the following

values are equal:
1 rtp[γ](u, u + w)

2 |γ(u+w )−γ(u)|2
2|P⊥

γ′(u)(γ(u+w )−γ(u))|

3 |γ′(u)|·|γ(u+w )−γ(u)|2
2|γ′(u)×(γ(u+w )−γ(u))

4 |γ(u+w )−γ(u)|2
2dist(γ(u+w ),γ(u)+Rγ′(u))

Important observation: We can split in numerator and denominator.
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Knot energies of tangent-point-type
Definition: Knot energies of tangent-point-type

Definition: knot energies of tangent-point-type TPq
p (cf.

[BR15a])

Let p, q > 0. The knot energy of tangent-point-type TP(p,q) is
defined by

TP(p,q) : C → R≥0 ∪ {∞},

γ 7→
∫

R/Z

∫ 1
2

− 1
2

|P⊥
γ′(u)(γ(u + w)− γ(u))|q

|γ(u + w)− γ(u)|p |γ′(u)| · |γ′(u + w)|dw du.

Remark: TPp = TP(p,2p)
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Knot energies of tangent-point-type
Some properties

The knot is homeomorphic to S1, if the energy is finite.

Theorem (cf. [SvdM12])
Let p > 2. If Γ ∈ C with |Γ′| = 1 a.e.( i.e. parameterized by arc-length),
TPp(Γ) < ∞, and H1(Γ(R/Z)) = L1(Γ) (i.e. the Hausdorff measure of
the image equals the length of the curve), then Γ(R/Z) is
homeomorphic to S1 and Γ|[0,1) is injective.

12/26



Knot energies of tangent-point-type and their generalization to higher
dimensions
PG Colloquium Edinburgh
Axel Wings

Knot energies of tangent-point-type
Some properties

Regularizing effects: The energy space is a fractional Sobolev space.

Theorem (cf. [Bla13])

Let p > 2 and Γ ∈ C1(R/Z,R3) with |Γ′| ≡ 1 and Γ|[0,1) injective.
Then the following equivalence holds

TPp(Γ) < ∞⇔ Γ ∈ W 2− 1
p ,p(R/Z,R3).

Remark

By definition of the fractional Sobolev space Γ ∈ W 2− 1
p ,p(R/Z,R3), iff

Γ ∈ W 1,p(R/Z,R3)

and

(∫
R/Z

∫ 1
2

− 1
2

|Γ′(u + w)− Γ′(u)|p
|w |p

) 1
p

< ∞
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Knot energies of tangent-point-type
Some properties

Theorem: Continuous differentiability, cf. [Win18]
Let q ∈ (1,∞) and p ∈ (q + 2, 2q + 1). Then, is the mapping

δTP(p,q) : W (p−1)/q,q
ir (R/Z,R3)→

(
W (p−1)/q,q(R/Z,R3)

)∗
,

γ 7→ δTP(p,q)(γ, •)

continuous, i.e. TP(p,q) is Fréchet differentiable on
W

(p−1)/q,q
ir (R/Z,R3).

The first variation is calculated in [BR15b].

14/26



Knot energies of tangent-point-type and their generalization to higher
dimensions
PG Colloquium Edinburgh
Axel Wings

Knot-energies of tangent-point-type
Numerical simulation

Let’s detangle this knot with a tangent-point energy and a gradient flow.

simulation and graphics from [YSC21]
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Generalization for surfaces and higher dimensions
Definition for Sets

By G (n,m) we denote the Grassmannian consisting of all m-dimensional
subspaces of Rn.

Definition, cf. [BGMM03]
Let Σ ⊂ Rn,P : Σ→ G (n,m) and p, q > 0.
The tangent-point energy of Σ with parameters p and q is given by

TP(p,q)(Σ,P) :=
∫

Σ

∫
Σ

dist(b, a+ P(a))q

|b− a|p dHm(b) dHm(a).

Moreover, it is set

r(p,q)tp (P, a, b) :=
|b− a|p

dist(b, a+ P(a))q
.

studied by [vdMS13] and [Kä21]
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Generalization for surfaces and higher dimensions
Definition via embeddings

Definition
Let p, q > 0. Further, let M be a closed, m-dimensional manifold. For a
sufficiently smooth embedding f : M → Rn the generalized
tangent-point energy is given by

Eqp (f ) :=
∫∫

M2
Eq
p (f )(x , y)ωf (x)ωf (y),

where the integrand is given by

Eq
p (f )(x , y) :=

|(1−Df f )(x)(f (y)− f (x))|q
|f (y)− f (x)|p

Here, Df f (x) := df |x (df |x )† ∈ Hom(Rn;Rn) is the projector on
df |x (TxM).
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Generalization for surfaces and higher dimensions
Comparison of the definitions

Both definitions agree.

Theorem
Let M be a compact, m-dimensional manifold and f : M → Rn a
sufficiently smooth embedding. Further, let P : f (M)→ G (n,m) be
defined by P(f (x)) = range(df |x ) for all f (x) ∈ f (M). Then it holds

TP(p,q)(f (M),P) = Eqp (f ).
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Generalization to surfaces
Numerical experiments

Taken from [YBSC21].

Recommendation: The YouTube
Channel Two minute papers
discussed the paper [YSC21] and
[YBSC21]:
https:
//youtu.be/M0RuBETA2f4
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Generalization to surfaces
Numerical experiments

Let’s detangle this surface with a tangent-point energy and a gradient
flow.

simulation and graphics from [YBSC21]
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Generalization to surfaces
Perspective and conclusion

The fine properties of the 1D tangent-point energies and the numerical
simulations motivate further studies of the generalization to higher
dimensions.
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Discussion

Thanks for the invitation and your attention.
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