The Dirichlet Problem for 2nd order linear elliptic PDEs

When can we solve them?

Martin Ulmer 12/11/21

Maxwell PG Colloquium

- $\Omega \subset \mathbb{R}^n$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$\lambda |\zeta|^2 \leq \zeta^T A(x) \zeta \leq \frac{1}{\lambda} |\zeta|^2 \qquad \text{for all } x \in \Omega.$$

• Dirichlet Problem: Let $f \in C(\partial \Omega)$. Find $u \in C^2(\Omega) \cap C(\overline{\Omega})$ such that

$$\mathcal{L}u = \operatorname{div}(A\nabla u) = 0 \quad \text{in } \Omega,$$
$$u = f \quad \text{on } \partial\Omega.$$

- $\Omega \subset \mathbb{R}^n$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$\lambda |\zeta|^2 \leq \zeta^T A(x) \zeta \leq \frac{1}{\lambda} |\zeta|^2 \qquad \text{for all } x \in \Omega.$$

• Dirichlet Problem: Let $f \in C(\partial \Omega)$. Find $u \in C^2(\Omega) \cap C(\overline{\Omega})$ such that

$$\mathcal{L}u = \operatorname{div}(A\nabla u) = 0 \quad \text{in } \Omega,$$
$$u = f \quad \text{on } \partial\Omega.$$

Example:

$$\operatorname{div}(\mathbb{I}\nabla u) = \Delta u = 0 \quad \text{in } \mathbb{B},$$
$$u = f \quad \text{on } \partial \mathbb{B}.$$

1

- $\Omega \subset \mathbb{R}^n$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$\lambda |\zeta|^2 \leq \zeta^T A(x) \zeta \leq \frac{1}{\lambda} |\zeta|^2 \quad \text{for all } x \in \Omega.$$

• Dirichlet Problem: Given $f \in L^p(\partial \Omega)$. Find $u \in W^{1,2}(\Omega)$ such that

$$\mathcal{L}u = \operatorname{div}(A\nabla u) = 0 \quad \text{in } \Omega,$$
$$u = f \quad \text{on } \partial\Omega.$$

- $\Omega \subset \mathbb{R}^n$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$\lambda |\zeta|^2 \leq \zeta^T A(x) \zeta \leq \frac{1}{\lambda} |\zeta|^2 \qquad \text{for all } x \in \Omega.$$

• Dirichlet Problem: Given $f \in L^p(\partial \Omega)$. Find $u \in W^{1,2}(\Omega)$ such that

$$\mathcal{L}u = \operatorname{div}(A\nabla u) = 0 \quad \text{in } \Omega,$$
$$u = f \quad \text{on } \partial\Omega.$$

Weak solvability:

- $\Omega \subset \mathbb{R}^n$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$\lambda |\zeta|^2 \leq \zeta^T A(x) \zeta \leq \frac{1}{\lambda} |\zeta|^2 \quad \text{for all } x \in \Omega.$$

• Dirichlet Problem: Given $f \in L^p(\partial \Omega)$. Find $u \in W^{1,2}(\Omega)$ such that

$$\begin{aligned} \mathcal{L} u = \operatorname{div}(A \nabla u) &= 0 & \quad \text{in } \Omega, \\ u &= f & \quad \text{on } \partial \Omega. \end{aligned}$$

We say the <u>L^p Dirichlet Problem for \mathcal{L} is solvable</u>, if for all $f \in L^p(\partial \Omega) \cap C(\partial \Omega)$ the solution $u \in W^{1,2}(\Omega)$ of

$$\mathcal{L}u = \operatorname{div}(A\nabla u) = 0 \quad \text{in } \Omega,$$
$$u = f \quad \text{on } \partial\Omega.$$

satisfies

 $\|\tilde{N}(u)\|_{L^p(\partial\Omega)} \leq C\|f\|_{L^p(\partial\Omega)}.$

From the Laplacian to the t-independence condition

It turns out that the L^p DP is solvable assuming *t*-independence.

From the Laplacian to the Carleson condition

A has the properties

- (i) $|\nabla A(x,t)| \leq \frac{C}{t}$,
- (ii) $|\nabla A(x,t)|^2 t dx dt$ is a Carleson measure.

Solvability of L^p Dirichlet Problem for \mathcal{L} : Carleson condition

$$\begin{array}{c} \bullet \ \delta(Z) := \operatorname{dist}(Z, \partial \Omega), \Delta(Q, r) := B(Q, r) \cap \partial \Omega, T(\Delta) := B(Q, r) \cap \Omega \\ \bullet X \\$$

- A measure μ on \mathbb{R}^n is called Carleson measure if there exists $C<\infty$ s.t

$$\mu(T(\Delta)) = \int_{T(\Delta)} d\mu(X) \leq C\sigma(\Delta) \quad \text{for all } \Delta \subset \partial \Omega.$$

Smallest C with this property is called Carleson norm $\|\mu\|_{\mathcal{C}}$.

Solvability of L^p Dirichlet Problem for \mathcal{L} : Carleson condition

$$\begin{array}{c} \bullet \ \delta(Z) := \operatorname{dist}(Z, \partial \Omega), \Delta(Q, r) := B(Q, r) \cap \partial \Omega, T(\Delta) := B(Q, r) \cap \Omega \\ \bullet X \\$$

- A measure μ on \mathbb{R}^n is called Carleson measure if there exists $C<\infty$ s.t

$$\mu(T(\Delta)) = \int_{T(\Delta)} d\mu(X) \leq C\sigma(\Delta) \quad \text{for all } \Delta \subset \partial \Omega.$$

Smallest C with this property is called Carleson norm $\|\mu\|_{\mathcal{C}}$.

• Set

$$d\mu(X) := \sup_{B(X,\delta(X)/2)} |\nabla A|^2 \delta(X) dX.$$

Theorem: If $\|\mu\|_{\mathcal{C}} < \infty$ then \mathcal{L} is L^p solvable for some p. If $\|\mu\|_{\mathcal{C}}$ is sufficiently small then \mathcal{L} is L^2 solvable.

Pertubation

• Given:

$$\mathcal{L}_0 = \operatorname{div}(A_0 \nabla \cdot), \qquad \mathcal{L}_1 = \operatorname{div}(A_1 \nabla \cdot)$$

• Goal:

 $\begin{aligned} \mathcal{L}_0 \text{ is } L^p \text{ solvable} + ``A_0 \text{ and } A_1 \text{ are close to each other}" \\ \Rightarrow \mathcal{L}_1 \text{ is } L^p \text{ solvable.} \end{aligned}$

Pertubation

٠

• Given:

$$\mathcal{L}_0 = \operatorname{div}(A_0 \nabla \cdot), \qquad \mathcal{L}_1 = \operatorname{div}(A_1 \nabla \cdot)$$

• Goal:

$$\begin{split} \mathcal{L}_0 \mbox{ is } L^\rho \mbox{ solvable } + \ "A_0 \mbox{ and } A_1 \mbox{ are close to each other"} \\ \Rightarrow \mathcal{L}_1 \mbox{ is } L^\rho \mbox{ solvable.} \end{split}$$

$$\delta(Z) := \operatorname{dist}(Z, \partial \Omega), \qquad \alpha(Z) := \sup_{\mathsf{Y} \in B(Z, \delta(Z)/2)} |\mathsf{A}_0(\mathsf{Y}) - \mathsf{A}_1(\mathsf{Y})|$$

<u>Theorem</u>: Pertubation result with Carleson condition If \mathcal{L}_0 is L^p solvable and

$$\|\frac{\alpha^{2}(X)}{\delta(X)}\|_{\mathcal{C}} \leq \gamma, \qquad \text{i.e.} \ \int_{\mathcal{T}(\Delta)} \frac{\alpha(Z)^{2}}{\delta(Z)} dZ \leq \gamma \sigma(\Delta)$$

sufficiently small then \mathcal{L}_1 is L^p solvable.

There are three (common) solvability criteria:

- t-independence
- Carleson measure condition
- Pertubation

There are three (common) solvability criteria:

- \cdot t-independence
- Carleson measure condition
- Pertubation

Question 1: What happens if A is non-symmetric?

Question 2: What happens if A is not bounded?

Question 3: Are there other conditions on pertubation between A_0 and A_1 so that solvability transfers from A_0 to A_1 ?

Question 4: Could there be a different type of perturbation which allows for non-trivial differences of the matrices at the boundary?

Question 5: What happens if A is a complex matrix?

Thank you for your attention! Questions?