The Dirichlet Problem for 2nd order linear elliptic PDEs

When can we solve them?

Martin Ulmer

12/11/21

Maxwell PG Colloquium

The Dirichlet Problem for elliptic PDEs

- $\Omega \subset \mathbb{R}^{n}$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$
\lambda|\zeta|^{2} \leq \zeta^{\top} A(x) \zeta \leq \frac{1}{\lambda}|\zeta|^{2} \quad \text { for all } x \in \Omega \text {. }
$$

- Dirichlet Problem: Let $f \in C(\partial \Omega)$. Find $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that

$$
\begin{aligned}
& \mathcal{L} u=\operatorname{div}(A \nabla u)=0 \\
& u=f \\
& \text { in } \Omega, \\
& \text { on } \partial \Omega .
\end{aligned}
$$

The Dirichlet Problem for elliptic PDEs

- $\Omega \subset \mathbb{R}^{n}$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$
\lambda|\zeta|^{2} \leq \zeta^{\top} A(x) \zeta \leq \frac{1}{\lambda}|\zeta|^{2} \quad \text { for all } x \in \Omega \text {. }
$$

- Dirichlet Problem: Let $f \in C(\partial \Omega)$. Find $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that

$$
\begin{aligned}
\mathcal{L} u=\operatorname{div}(A \nabla u) & =0 \quad \text { in } \Omega, \\
u & =f
\end{aligned} \quad \text { on } \partial \Omega .
$$

Example:

$$
\begin{aligned}
& \operatorname{div}(\mathbb{I} \nabla u)=\Delta u=0 \quad \text { in } \mathbb{B}, \\
& u=f \quad \text { on } \partial \mathbb{B} .
\end{aligned}
$$

The Dirichlet Problem for elliptic PDEs

- $\Omega \subset \mathbb{R}^{n}$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$
\lambda|\zeta|^{2} \leq \zeta^{\top} A(x) \zeta \leq \frac{1}{\lambda}|\zeta|^{2} \quad \text { for all } x \in \Omega \text {. }
$$

- Dirichlet Problem: Given $f \in L^{p}(\partial \Omega)$. Find $u \in W^{1,2}(\Omega)$ such that

$$
\begin{aligned}
\mathcal{L} u=\operatorname{div}(A \nabla u) & =0 & & \text { in } \Omega, \\
u & =f & & \text { on } \partial \Omega .
\end{aligned}
$$

The Dirichlet Problem for elliptic PDEs

- $\Omega \subset \mathbb{R}^{n}$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$
\lambda|\zeta|^{2} \leq \zeta^{\top} A(x) \zeta \leq \frac{1}{\lambda}|\zeta|^{2} \quad \text { for all } x \in \Omega \text {. }
$$

- Dirichlet Problem: Given $f \in L^{p}(\partial \Omega)$. Find $u \in W^{1,2}(\Omega)$ such that

$$
\begin{aligned}
\mathcal{L} u=\operatorname{div}(A \nabla u) & =0 & \text { in } \Omega, \\
u & =f & \text { on } \partial \Omega .
\end{aligned}
$$

Weak solvability:

$$
\begin{aligned}
\int_{\Omega} A \nabla u \cdot \nabla \varphi d x=0 & \text { for all } \varphi \in C_{0}^{\infty}(\Omega) \\
& u(X)^{x \rightarrow 0, x \in \Gamma} f(Q)
\end{aligned}
$$

Boundary data:

The Dirichlet Problem for elliptic PDEs

- $\Omega \subset \mathbb{R}^{n}$ domain
- Elliptic real matrix, i.e. $A(x) \in \mathbb{R}^{n \times n}$ with

$$
\lambda|\zeta|^{2} \leq \zeta^{\top} A(x) \zeta \leq \frac{1}{\lambda}|\zeta|^{2} \quad \text { for all } x \in \Omega \text {. }
$$

- Dirichlet Problem: Given $f \in L^{p}(\partial \Omega)$. Find $u \in W^{1,2}(\Omega)$ such that

$$
\begin{aligned}
\mathcal{L} u=\operatorname{div}(A \nabla u) & =0 & \text { in } \Omega, \\
u & =f & \text { on } \partial \Omega .
\end{aligned}
$$

We say the L^{p} Dirichlet Problem for \mathcal{L} is solvable, if for all $f \in L^{p}(\partial \Omega) \cap C(\partial \Omega)$ the solution $u \in W^{1,2}(\Omega)$ of

$$
\begin{aligned}
\mathcal{L} u=\operatorname{div}(A \nabla u) & =0 & & \text { in } \Omega, \\
u & =f & & \text { on } \partial \Omega .
\end{aligned}
$$

satisfies

$$
\|\tilde{N}(u)\|_{L^{\rho}(\partial \Omega)} \leq C\|f\|_{L^{\rho}(\partial \Omega)} .
$$

From the Laplacian to the t-independence condition

It turns out that the $L^{p} D P$ is solvable assuming t-independence.

From the Laplacian to the Carleson condition

A has the properties
(i) $|\nabla A(x, t)| \leq \frac{c}{t}$,
(ii) $|\nabla A(x, t)|^{2} t d x d t$ is a Carleson measure.

Solvability of L^{p} Dirichlet Problem for \mathcal{L} : Carleson condition

- $\delta(Z):=\operatorname{dist}(Z, \partial \Omega), \Delta(Q, r):=B(Q, r) \cap \partial \Omega, T(\Delta):=B(Q, r) \cap \Omega$

- A measure μ on \mathbb{R}^{n} is called Carleson measure if there exists $C<\infty$ s.t

$$
\mu(T(\Delta))=\int_{T(\Delta)} d \mu(X) \leq C \sigma(\Delta) \quad \text { for all } \Delta \subset \partial \Omega
$$

Smallest C with this property is called Carleson norm $\|\mu\|_{\mathcal{C}}$.

Solvability of L^{p} Dirichlet Problem for \mathcal{L} : Carleson condition

- $\delta(Z):=\operatorname{dist}(Z, \partial \Omega), \Delta(Q, r):=B(Q, r) \cap \partial \Omega, T(\Delta):=B(Q, r) \cap \Omega$

- A measure μ on \mathbb{R}^{n} is called Carleson measure if there exists $C<\infty$ s.t

$$
\mu(T(\Delta))=\int_{T(\Delta)} d \mu(X) \leq C \sigma(\Delta) \quad \text { for all } \Delta \subset \partial \Omega
$$

Smallest C with this property is called Carleson norm $\|\mu\|_{\mathcal{C}}$.

- Set

$$
d \mu(X):=\sup _{B(X, \delta(X) / 2)}|\nabla A|^{2} \delta(X) d X .
$$

Theorem: If $\|\mu\|_{\mathcal{C}}<\infty$ then \mathcal{L} is L^{p} solvable for some p. If $\|\mu\|_{\mathcal{C}}$ is sufficiently small then \mathcal{L} is L^{2} solvable.

Pertubation

- Given:

$$
\mathcal{L}_{0}=\operatorname{div}\left(A_{0} \nabla \cdot\right), \quad \mathcal{L}_{1}=\operatorname{div}\left(A_{1} \nabla \cdot\right)
$$

- Goal:
\mathcal{L}_{0} is L^{p} solvable $+" A_{0}$ and A_{1} are close to each other"
$\quad \Rightarrow \mathcal{L}_{1}$ is L^{p} solvable.

Pertubation

- Given:

$$
\mathcal{L}_{0}=\operatorname{div}\left(A_{0} \nabla \cdot\right), \quad \mathcal{L}_{1}=\operatorname{div}\left(A_{1} \nabla \cdot\right)
$$

- Goal:
\mathcal{L}_{0} is L^{p} solvable $+" A_{0}$ and A_{1} are close to each other"
$\quad \Rightarrow \mathcal{L}_{1}$ is L^{p} solvable.

$$
\delta(Z):=\operatorname{dist}(Z, \partial \Omega), \quad \alpha(Z):=\sup _{Y \in B(Z, \delta(Z) / 2)}\left|A_{0}(Y)-A_{1}(Y)\right|
$$

Theorem: Pertubation result with Carleson condition
If \mathcal{L}_{0} is L^{p} solvable and

$$
\left\|\frac{\alpha^{2}(X)}{\delta(X)}\right\|_{c} \leq \gamma, \quad \text { i.e. } \int_{T(\Delta)} \frac{\alpha(Z)^{2}}{\delta(Z)} d Z \leq \gamma \sigma(\Delta)
$$

sufficiently small then \mathcal{L}_{1} is L^{p} solvable.

Conclusion and further questions?

There are three (common) solvability criteria:

- t-independence
- Carleson measure condition
- Pertubation

Conclusion and further questions?

There are three (common) solvability criteria:

- t-independence
- Carleson measure condition
- Pertubation

Question 1: What happens if A is non-symmetric?
Question 2: What happens if A is not bounded?
Question 3: Are there other conditions on pertubation between A_{0} and A_{1} so that solvability transfers from A_{0} to A_{1} ?

Question 4: Could there be a different type of perturbation which allows for non-trivial differences of the matrices at the boundary?

Question 5: What happens if A is a complex matrix?

Thank you for your attention! Questions?

