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James Clerk Maxwell
m Mathematical physicist
m 1831-1879
m Born in Edinburgh

m Edinburgh & Cambridge
Universities
m Discoveries:
> RGB colour vision
» composition of Saturn’s rings
» unification of
electromagnetism
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Figure: James Clerk Maxwell (Wikimedia electromagnetic wave
Commons).
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Figure: Electric fields for a point
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The mechanical energy input to
a generator turns the coil in the
magnetic field.

Figure: An AC generator
(Hyperphysics).

© Sinusoidal
voltage output

Avoltage proportional to
the rate of change of the
area facing the magnetic
field is generated in the
L I

coil. This is an
of Faraday's law.
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ELECTROMAGNETIC WAVES

In a vacuum (p = 0,J = 0), these combine into wave equations

= &PE - 6°B
V’E = ,Uoﬁo% V’B = MOGOﬁ

with speed ¢ = \/;JTeo =3 x 108ms~" - the speed of light!

But this is a problem for 191" century physics...
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What is a "symmetry" in a physical theory?
m A transformation which leaves physical laws invariant

m Example: N point particles in Newtonian gravity, i =1,..., N
N .
Gm,-mj . . d2X;
= X) =mi—
j£i |X; — X;|

m Invariant under X; — X; +a
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SYMMETRIES: WHY DO WE WANT THEM?

Why are they important?

m Simplify problems

m Noether’s theorem: continuous
symmetries are associated with
conservation laws

» Example: momentum conservation
m Provide principles for building theories

Figure: Emmy Noether (1882-1935)
(Encyclopadia Britannica).
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SYMMETRIES: THEORIES VS SOLUTIONS

Physical states might not share
the symmetries of the theory ~[TNT]~

m Such a symmetry is said to
be (spontaneously) broken

m Some symmetries may be
preserved 158 p

m Broken symmetry maps to a ‘ >
different physical state

FEFY RS

Figure: A bar magnet(Hyperphysics).
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SPACETIME SYMMETRIES - NEWTON AND GALILEO

Before Maxwell: Galilean relativity
m The transformations are

» Spacial translations X — X + a
» Rotations X — RX

» Time translationst —t+s

> Galilean boosts X — X + vit

m Velocities transform additively: X — X + V
m Time intervals and distances are invariant
Maxwell’s equations are not invariant under Galilean boosts!
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SPACETIME SYMMETRIES - MAXWELL AND EINSTEIN

Maxwell's discovery forced a radical shift:
m Replace Galilean boosts with Lorentzian boosts

ek o, Xt

- -@

» Velocities do not simply add, and |v| < ¢
m Translations and rotations stay the same
m Einstein: time intervals and distance are not invariant, but
the spacetime interval c3(t, — t;)? — X, — X;|* is
m Galilean relativity replaced by Einstein’s special relativity
But these aren't all of the symmetries of Maxwell’s equations...

t— (boost in x-direction)
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V-B=0 vi:g
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E, B can be written in terms of potentials A, ¢:

V.-B=0 — B=V xA

—

., OB _ OR
E- -2 E=-vo- 20
V x 5t — Vo it
E and B are invariant under the transformation
A—A+Va =P — (?9(;

Gauge symmetry actually forces electromagnetism onto us!
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Dirac equation:
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h@t

mc2 By — thZa,a
where ¢ : R x R3 — C* and «j, 8 € Myx4(C).

m Possibly the first (correct) physical theory motivated purely
by symmetry principles

m Combines the principles of quantum mechanics and special
relativity

Dirac’s equation gives
m a quantum, relativistic description of the (free) electron
m an explanation for the origin of quantum "spin"
m prediction of the existence of anti-matter
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GAUGING THE DIRAC EQUATION

Can we add a gauge symmetry to the Dirac equation?

m Dirac equation has phase invariance: 1) — e/}
m 0 € R is constant, but what if we "upgrade" it to a function?
» Dirac’s equation is not invariant

We can get an invariant equation by adding the terms

3
ecZA,-a,-qﬁ + epyp
i=1
m Where new fields ¢ and A which transform like

- - h h 00
A— A+ — _ Yy
— +CV9 ) <ot

m The first quantum field theory: quantum electrodynamics
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THE STANDARD MODEL OF PARTICLE PHYSICS

Standard Model of Elementary Particles
three generations of matter interactions / force carriers
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Commons).
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Standard Model of Elementary Particles
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= Fa IFa |f o Ty Based the symmetry principles
w || oham || op || gluon I higgs already mentioned
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> Predicted new particles

Figure: SM particles (Wikimedia
Commons).
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The SM is extremely successful:
m Constituents of ordinary matter

interactions / i

oo | v m Microscopic forces

‘ ‘°"Y.»;J‘-"“°" e m All particle collider

‘O | ® experiments to date

bottom photon . .

——— It has some serious issues though:
il | Pl m No accounting for "dark

~a0.39 Govie:

matter" or "dark energy"
m Hierarchy problem
m Issues with particle masses
m Other technical issues...
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Possible solution to issues with SM: a new symmetry!
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Figure: MSSM Particles (DESY).

m Symmetry between fermions and bosons
m Every particle has a "superpartner" of the opposite type
m Constrains interactions between particles
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TROUBLE FOR SUPERSYMMETRY

Recent experimental results rule out previously favoured
supersymmetric models

m Supersymmetry not dead, but treated with much more
skepticism now

m More ideas being explored, many based on symmetry
considerations




HAVE WE FOLLOWED THE WRONG PATH?

HOW BEAUTY LEADS

PHYSICS ASTRAY

Figure: Lost in Math by Sabine Hossenfelder.
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