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James Clerk Maxwell

Figure: Statue of Maxwell,
Edinburgh (Wikimedia Commons). Figure: Plaque, Edinburgh (Wikimedia Commons).
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Maxwell’s Equations

∇ · ~E =
ρ

ε0
Gauss (electrical)

∇ · ~B = 0 Gauss (magnetic)

∇× ~E = −∂
~B
∂t Faraday

∇× ~B = µ0~J Ampère
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∇ · ~E =
ρ

ε0
Gauss (electrical)

∇ · ~B = 0 Gauss (magnetic)

∇× ~E = −∂
~B
∂t Faraday

∇× ~B = µ0~J Ampère
Figure: Electric fields for a point
charge (Hyperphysics).
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Maxwell’s Equations

∇ · ~E =
ρ

ε0
Gauss (electrical)

∇ · ~B = 0 Gauss (magnetic)

∇× ~E = −∂
~B
∂t Faraday

∇× ~B = µ0~J Ampère
Figure: A solenoid (Hyperphysics).
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Maxwell’s Equations

∇ · ~E =
ρ

ε0
Gauss (electrical)

∇ · ~B = 0 Gauss (magnetic)

∇× ~E = −∂
~B
∂t Faraday

∇× ~B = µ0ε0
∂~E
∂t + µ0~J Maxwell-Ampère

∂ρ

∂t +∇ ·
~J Continuity
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Electromagnetic waves

In a vacuum (ρ = 0,~J = 0), these combine into wave equations

∇2~E = µ0ε0
∂2~E
∂t2 ∇2~B = µ0ε0

∂2~B
∂t2

with speed c = 1√
µ0ε0

= 3× 108ms−1 – the speed of light!
But this is a problem for 19th century physics. . .
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Symmetries

What is a "symmetry" in a physical theory?

A transformation which leaves physical laws invariant
Example: N point particles in Newtonian gravity, i = 1, . . . ,N

N∑
j6=i

Gmimj∣∣~xi − ~xj∣∣3 (~xj − ~xi) = mi
d2~xi
dt2

Invariant under ~xi → ~xi + ~a
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Symmetries: Why do we want them?

Why are they important?

Simplify problems
Noether’s theorem: continuous
symmetries are associated with
conservation laws

I Example: momentum conservation

Provide principles for building theories

Figure: Emmy Noether (1882-1935)
(Encyclopædia Britannica).
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Symmetries: Theories vs solutions

Physical states might not share
the symmetries of the theory

Such a symmetry is said to
be (spontaneously) broken
Some symmetries may be
preserved
Broken symmetry maps to a
di�erent physical state

Figure: A bar magnet(Hyperphysics).
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Spacetime symmetries - Newton and Galileo

Before Maxwell: Galilean relativity

The transformations are

I Spacial translations ~x→ ~x+ ~a
I Rotations ~x→ R~x
I Time translations t→ t+ s
I Galilean boosts ~x→ ~x+ ~vt

Velocities transform additively: ~̇x → ~̇x+~v

Time intervals and distances are invariant
Maxwell’s equations are not invariant under Galilean boosts!
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Spacetime symmetries - Maxwell and Einstein

Maxwell’s discovery forced a radical shift:

Replace Galilean boosts with Lorentzian boosts

t→
t+ vx

c2√
1−

( v
c
)2

x→ x + vt√
1−

( v
c
)2

(boost in x-direction)

I Velocities do not simply add, and |v| < c

Translations and rotations stay the same
Einstein: time intervals and distance are not invariant, but
the spacetime interval c2(t2 − t1)2 − |~x2 − ~x1|2 is
Galilean relativity replaced by Einstein’s special relativity

But these aren’t all of the symmetries of Maxwell’s equations. . .
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Gauge symmetry

∇ · ~B = 0 ∇ · ~E = ρ
ε0

∇× ~E = −∂
~B
∂t ∇× ~B = µ0ε0

∂~E
∂t + µ0~J

~E, ~B can be written in terms of potentials ~A, φ:

∇ · ~B = 0 =⇒ ~B = ∇× ~A

∇× ~E = −∂
~B
∂t =⇒ ~E = −∇φ− ∂~A

∂t
~E and ~B are invariant under the transformation

~A→ ~A +∇α φ→ φ− ∂α

∂t

Gauge symmetry actually forces electromagnetism onto us!
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Symmetries in
Quantum Field Theory



Symmetry as a first principle - Dirac Equation

Dirac equation:

mc2βψ − i~c
3∑
i=1

αi
∂ψ

∂xi
= i~∂ψ

∂t

where ψ : R× R3 → C4 and αi, β ∈ M4×4(C).

Possibly the first (correct) physical theory motivated purely
by symmetry principles
Combines the principles of quantum mechanics and special
relativity

Dirac’s equation gives
a quantum, relativistic description of the (free) electron
an explanation for the origin of quantum "spin"
prediction of the existence of anti-matter
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Gauging the Dirac equation

Can we add a gauge symmetry to the Dirac equation?

Dirac equation has phase invariance: ψ → eiθψ
θ ∈ R is constant, but what if we "upgrade" it to a function?

I Dirac’s equation is not invariant

We can get an invariant equation by adding the terms

ec
3∑
i=1

Aiαiφ+ eφψ

Where new fields φ and ~A which transform like

~A→ ~A +
~
c∇θ φ→ φ− ~

c
∂θ

∂t

The first quantum field theory: quantum electrodynamics
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The Standard Model and beyond



The Standard Model of Particle Physics

Figure: SM particles (Wikimedia
Commons).

14 18



The Standard Model of Particle Physics

Figure: SM particles (Wikimedia
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Based the symmetry principles
already mentioned

Special relativity
(Non-abelian) gauge
symmetries

I Organise particles
I Constrain interactions
I Predicted new particles
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The Standard Model of Particle Physics

Figure: SM particles (Wikimedia
Commons).

The SM is extremely successful:
Constituents of ordinary matter
Microscopic forces
All particle collider
experiments to date

It has some serious issues though:
No accounting for "dark
matter" or "dark energy"
Hierarchy problem
Issues with particle masses
Other technical issues. . .
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Supersymmetry

Possible solution to issues with SM: a new symmetry!
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Supersymmetry

Possible solution to issues with SM: a new symmetry!

Figure: MSSM Particles (DESY).

Symmetry between fermions and bosons
Every particle has a "superpartner" of the opposite type
Constrains interactions between particles
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Trouble for supersymmetry

Recent experimental results rule out previously favoured
supersymmetric models

Supersymmetry not dead, but treated with much more
skepticism now
More ideas being explored, many based on symmetry
considerations
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Have we followed the wrong path?

Figure: Lost in Math by Sabine Hossenfelder.
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