
Parameter Estimation in Sparse Linear-Gaussian State-Space Models via Reversible Jump Markov
Chain Monte Carlo

Benjamin Cox and Víctor Elvira
School of Mathematics, University of Edinburgh

Problem Statement
We have:
•A linear Gaussian state-space model with unknown transition matrix A

xt = Axt−1 + qt,
yt = Hxt + rt,

(1)

where
•A ∈ Rdx×dx is the unknown transition matrix
•H ∈ Rdy×dx is a known matrix
• qt ∼ N (0,Q) with Q known
• rt ∼ N (0,R) with R known
• x0 ∼ N (x̄0,P0) with x̄0 and P0 known
•Observations y1:T ∈ Rdy of this SSM
Objective: estimate the value and structure of A.

Kalman Filtering
Kalman filtering allows us to obtain optimal estimates of x1:T given y1:T and values for the
other parameters. In particular it does this efficiently and gives an analytic distribution for
the hidden state.
We can use this distribution to obtain a likelihood over which to optimise our parameter
values. This is standard and is the focus of many existing techniques.

Reversible Jump Markov Chain Monte Carlo
Reversible Jump Markov Chain Monte Carlo (RJMCMC) is a method by which one can sample
from multiple different models within the same MCMC chain. With some known probability
at each step the chain transitions between models in a manner that preserves detailed balance
and ergodicity.
We can use different models to explore sparse subspaces of A, thus allowing us to sample
structure as well as value.

Proposed Algorithm: SpaRJ
We can combine RJMCMC and Kalman filtering to sample different models of our A matrix.
Using RJMCMC lets us operate in a Bayesian framework, affording additional flexibility.
•We define the sparsity of A as a per-model property, therefore changing sparsity when we
change models. This allows the sampling of exact zeros.
•We include prior information via a function Λ(·, ·, λ). This function compares the accepted
sample and the proposed sample.
•We walk over sparsity levels as a modified random walk: we have maximal and minimal
sparsity levels, and the ability to remain at the same sparsity/model.
•We remain at the same model/level of sparsity with probability π0
• If we do not remain we jump one level sparser with probability π−1, otherwise we jump one level denser.
(See Alg. 2 for details as to how jumps are performed)

Algorithm 1 gives the core method. Algorithm 2 gives the full form of the jumping rules. Note
some corrections to the acceptance probability are made when jumping.
The method provides flexibility in the choice of
•Λ(·, ·, λ), the prior penalty function
• g(·), the distribution from which newly dense parameters are drawn
•The method by which samples of A are generated from the posterior of a retained model
We find that the Lasso, N (0, 0.12), and RWMH work well respectively.

Performance
The method has good performance compared to existing methods due to several properties:
•The algorithm does not sample sparse elements, reducing the dimension of the parameter
space
• Penalising complexity (to a specified extent)
• Exploiting the interconnectedness of the generated models when jumping
• Sparse samples allow for easier inference
• Significance testing is much easier
• Checking for interrelatedness between series is easier
• Real systems tend to be sparse
• Sampler for the posterior of A within each model can be modified using subject knowledge
Furthermore the method is effectively composed of several smaller algorithms that can be
changed as long as the output is comparable. Therefore it is very tunable to a given use case.

Overview
We have developed a method, which we call SpaRJ, that combines RJMCMC and Kalman
filtering to sparsely sample A. Our method can be used as
•A sampler to obtain sparse samples of A for inference
•A method to assess the linear relatedness of different time series
•An algorithm to sparsely estimate parameters in an AR(IMA) model
or anywhere else an estimate of A is required. The method has solid theoretical guarantees
and shows excellent performance in challenging numerical examples.

Algorithm Pseudocode
Parameters
•A0: initial value for sampling A
•N : number of iterations/samples
• g(·): completion distribution
• π0, π−1: jump probabilities
•Λ(·, ·, λ): prior function
•All SSM parameters except A
The primary algorithm is detailed here.
Algorithm 1: SpaRJ algorithm
Input: y1:T ,A0, g(·), π0, π−1, N,Λ(·, ·, λ), all other SSM parameters
Output: Set of N samples {An}Nn=1
begin
Initialisation
Initialise M0 as fully dense
Run a Kalman filter, obtaining l = log(p(y1:T |A0)).
for n = 1, ..., N do
Step 1: Propose model and A∗
Jump models with probability 1− π0.
if Jump then
Run Algorithm 2 to generate M∗, A∗, and c.

else
Set c = 0, M∗ = Mn−1.
Sample A∗ from the posterior of M∗.

end
Step 2: Modified MH accept-reject
Run a Kalman filter with A∗ and obtain l∗ = log(p(y1:T |A∗)).
Construct ar = l∗ − l + Λ(An−1,A∗, λ) + c.
Accept with probability exp(ar).
if accept then
Set Mn = M∗, An = A∗, l = log(p(y1:T |An))

end
end

end

For simplicity we provide the jump algorithm separately.
Algorithm 2: Jumping algorithm
Input: SSM model matrix An−1, g(·), π−1
Output: Adjusted SSM model matrix A∗, correction c
begin
Step 1: Determine jump direction
if An−1 Densest OR Sparsest then
Jump sparser or denser respectively

else
Jump sparser with probability π−1

end
Step 2: Perform jump
if Jump sparser then

Step 2.1: Jump sparser
Uniformly select a dense element s of An−1 to become sparse.
Set A∗ to An−1 with s set to 0.
Set c = logpdf(g, s).

else
Step 2.2: Jump denser
Uniformly select a sparse element d of An−1 to become dense.
Draw u ∼ g(·).
Set A∗ to An−1 with d set to u.
Set c = −logpdf(g, u).

end
end

Numerical Examples

Figure: Comparing GraphEM
and SpaRJ over variable series
length on the 3x3 system

These systems were derived from random matrices with the given
structure and isotropic covariance terms. Results are averaged
over 200 independent runs.

transition matrix structure method spec. recall prec. F1
3× 3 matrix GraphEM 0.86 0.98 0.79 0.88

SpaRJ 0.96 0.99 0.95 0.97
6× 6 block diagonal GraphEM 0.83 0.90 0.91 0.91

SpaRJ 0.92 0.96 0.95 0.95
12× 12 block diagonal GraphEM 0.85 0.77 0.96 0.85

SpaRJ 0.83 0.89 0.91 0.90

Table: Sparsity statistics over variable systems.

Contact Information

•Web: https://blogs.ed.ac.uk/benjamincox/
• Email: Benjamin.Cox@ed.ac.uk

https://blogs.ed.ac.uk/benjamincox/
mailto:Benjamin.Cox@ed.ac.uk
https://www.maths.ed.ac.uk/school-of-mathematics
https://eo-cdt.org/

