Tonal alignment under time pressure in the Bor dialects of Dinka

Bert Remijsen University of Edinburgh

Arts & Humanities Research Council

BEYOND **TEXT**

What are the structural divisions in the tone space?

Tone height features

- Are problematic / irrelevant to phonological analysis (Mazaudon 1988; Clements, Michaud & Patin, to appear; Hyman 2010);
- Are not supported phonetically (Stevens 1989, Stevens & Keyser 2010).

Introduction

But what about tone alignment?

 Speech perception: it takes a difference in alignment of ±50 ms over the vowel for two otherwise identical contours to be reliably distinguished (House 2004);

• Many consider distinctive alignment to be impossible.

Example – Silverman (1997) on Comaltepec Chinantec (building on Anderson, Martínez & Pace 1990)

- The tone inventory of tone inventory includes 3 level tonemes, and 2 rises, but <u>no underlying falls</u>.
- Silverman (1997) postulates rightward High shift in Compaltepec Chinantec.

Introduction

- Silverman (1997:479-480):
 - rightward High shift would result in loss of contrast if there also where underlying falls.
 - So only one falling pattern of alignment (HL) in the surface phonology.

 I will present counterevidence from Dinka. Here there is rightward High shift too – in spite of the existence of an underlying fall.

A distinction in alignment in falling tonemes in Dinka?

Dèenǎ-tînràaanlèelDengDECL-seeperson:sisolate:3sg'Dengseesthe person he isolated.'

Dèengǎ-tíngràaanlêelDengDECL-seeperson:Sprovoke:PASS'Dengseesthe provokedperson.'

Figure – Averaged f0 traces on normalized time axis, showing the realization of HL vs. L following L. Traces averaged across 4 speakers.

... ràaan lèel person:s isolate:3sg 'the person he isolated'

... ràaan lêel person:S provoke:PASS 'the provoked person'

person:S DECL-isolate:3SG 'He isolates a person.'

person:S DECL-provoke:PASS 'The person is being provoked.'

Figure – Averaged f0 traces on normalized time axis, showing the realization of HL vs. L following L. Traces averaged across 4 speakers.

... ràaan lèel person:s isolate:3sg 'the person he isolated'

... ràaan lêel person:S provoke:PASS 'the provoked person'

ràaan ǎ-lèel

person:S DECL-isolate:3SG 'He isolates a person.'

ràaan ǎ-lêel

person:S DECL-provoke:PASS 'The person is being provoked.'

Figure – The realization of HL vs. L following L (left) and LH (right). Traces averaged across 4 speakers.

Sounds are embedded on this page; click in the grey rectangles to hear them.

 The contrast between Low(Fall) vs. Fall is found on short vowels as well:

ràaanǎ–lèlràaanǎ–lêlperson:SGDECL-isolate:PASSperson:SGDECL-isolate:PASS'You are isolating a person.''The person is being isolated.'

House (1990)

• There is a model of pitch perception that hypothesizes that such a contrast can be maintained: House (1990).

House (1990)

• Perception of falling f0 patterns (House 1990:133ff):

• This is a quantal threshold, in the sense of Stevens (1989).

Introduction

• Are we overlooking a phonological parameter in the study of tone?

 I carried out a production study on the distinction between two falling contours in Dinka.

Research prediction (based on House 1990):

 If Dinka has two phonologically distinct tone patterns characterised by an f0 fall, then the start of the f0 fall for the two patterns should remain at opposite sides of a threshold at about 30 ms into the vowel.

Methods

Pitch movements under time pressure (Caspers & van Heuven 1993; Xu 1998; Ladd, Faulkner, Faulkner & Schepman 1999):

• Investigate variability in alignment by controlling the segmental space and tonal specification.

Methodology

Materials

• The phonological tone contrast:

/L/ (falling allotone) **ràaan ă–lèel** person:SG DECL-isolate:3SG 'He is isolating a person.' /HL/

ràaan ǎ-lêel person:S DECL-provoke:PASS 'The person is being provoked.'

Materials

• Time pressure was controlled through vowel length:

Stem	Prefix length		
length	V-	VV-	
	ràaan ǎ-lèl	rò̯oor ǎa-lèl	
V	person:S DECL-isolate:2so 'You isolate a person.'	G men DECL:P-isolate:2SG 'You isolate men.'	
VV	ràaan ǎ-lèel	ròoor ǎa-lèel	
	person:S DECL-isolate:3SG 'He isolates a person.'	men DECL:P-isolate:3SG 'He isolates men.'	
VVV	ràaan ǎ-lèeel	ròoor ǎa-lèeel	
	person:S DECL-provoke:3s 'He provokes a person.'	G men DECL:P-provoke:3SG 'He provokes men.'	

Sounds are embedded on this page; click in the grey rectangles to hear them.

• Dialect difference in phonological configuration: Bor North vs. Bor South.

Map of South Sudan region, showing Dinka dialects. The target dialects are highlighted:

Methods

 Dialect difference in phonological configuration: HL on a short stem vowel only in Bor North – Bor South has LH instead:

Bor
Northràaanǎ-lêlBor
Southràaanǎ-lělPerson:SGDECL-isolate:PASS'The person is being isolated.'

 4 segmental sets, in which onset, vowel, and manner of the coda are kept constant:

```
lel-leel-leeel
maŋ-maaŋ-maaan
wel-weel-weeel
```

nop-noop-nooot

- 40 types in total: 4 segmental sets * 10 prosodies
- 13 speakers: 7 from Bor North, 6 from Bor South

Methods

• Spikes in the f0 traces were trimmed using the algorithm reported in Xu (1999).

Figure – f0 traces, before (grey) and after (black) application of Yi Xu's trimming algorithm. This algorithm is available online as part of ProsodyPro [http://www.phon.ucl.ac.uk/home/yi/ProsodyPro/]

 Three-level vowel length conditions big differences in duration (cf. Remijsen & Gilley 2008 on Luanyjang):

Figure: Vowel duration by vowel length (mn + 1sd)

• Averaged f0 traces for Fall vs. Low^{Fall}:

• The difference in peak height is small (2Hz) and not significant.

 The differences in peak alignment between Low(Fall) and Fall lies around 44 ms.

Low^{Fall} vs. Fall

Figure – Means and standard deviations for peak alignment in the Low(Fall) vs. Fall tonemes.

• There is contextual variation in peak alignment of the Low(Fall):

• Linear mixed effects model (Bates 2004) with dependent peak alignment – random factors Speaker (13), Set (4):

Factor	Levels	t value	Probability
Stem length	V vs. VV	7.5	<0.0001
	V vs. VVV	9.5	<0.0001
	VV vs. VVV	3.1	0.002
Toneme	Low ^{Fall} vs. Fall	33.3	<0.0001
Prefix length	V vs. VV	-3.1	<0.002
Dialect	SB vs. NB	-3.7	0.0003

 All factors are significant, and the contrast between Low^{Fall} vs. Fall registers the biggest effect.

Conclusion

Conclusion

- (House 1990, 1996) postulated a [±movement] feature, whereby alignment early in the vowel patterns along with alignment in preceding onset.
- Corroborated in Dinka: the start of Low(Fall) aligns early on in the vowel or in the onset; the Fall toneme is aligned well into the vowel.
- In response to Stevens (1989) Stevens & Keyser (2010): there is evidence of a quantal relation in tone. It relates not to tone height, but to tone alignment.

References

Andersen, T. (1987). The Phonemic System of Agar Dinka. Journal of African Languages and Linguistics 9, 1-27.

- Anderson, J.L., Martínez, I.H., & Pace, W. (1990). Comaltepec Chinantec Tone. In William R. Merrifield & Calvin R. Rensch (eds.) Syllables, Tone, and Verb Paradigms. Studies in Chinantec Languages 4, 3-20
- Atterer, M. & Ladd, D.R. (2004). On the phonetics and phonology of "segmental anchoring" of F0: evidence from German. JPhon 32, 177-197.
- Becker-Kristal, R. (2010). Acoustic typology of vowel inventories and Dispersion Theory: Insights from a large cross-linguistic corpus. UCLA PhD dissertation.
- Caspers, J. & van Heuven, V.J. (1993). Effects of Time Pressure on the Phonetic Realization of the Dutch Accent-Lending Pitch Rise and Fall. *Phonetica* 50: 161-171.

Clements, G.N., A. Michaud & C. Patin (to app.). Do we need tone features? in E. Hume, J. Goldsmith & W.L. Wetzels (eds.) Tones and Features.

- House, D. (1990). Tonal Perception in Speech. Travaux de l'institut de linguistique de Lund 24. Lund: Lund University Press.
- House, D. (1996). Differential perception of tonal contours through the syllable. In *Proceedings ICSLP 96, Fourth International Conference on Spoken Language Processing* (pp. 2048-2051).
- House, D. (2004). Pitch and alignment in the perception of tone and intonation. In Fant, G., Fujisaki, H., Cao, J., & Xu, Y. (Eds.), *From Traditional Phonology to Modern Speech Processing* (pp. 189-204). Beijing: Foreign Language Teaching and Research Press.
- Ladd, D.R., D. Faulkner, H. Faulkner & A. Schepman (1999). Constant "segmental anchoring" of F0 movements under changes in speech rate. JASA 106, 1543-1554.
- Liljencrants, J., & Lindblom, B. (1972). Numerical simulation of vowel quality systems: the role of perceptual contrast. Language 48, 839-862.
- Mazaudon, Martine (1988). An historical argument against tone features. Paper presented at the Annual Meeting of the Linguistic Society of America, New Orleans. [URL: http://halshs.archives-ouvertes.fr/halshs-00364901_v1].

Remijsen, B., & Ladd, D.R. (2008). The tone system of the Luanyjang dialect of Dinka. Journal of African Languages and Linguistics 29, 149-189.

- Prieto, Pi.(2011). Tonal alignment. In Marc van Oostendorp, Colin J. Ewen, Elizabeth Hume & Keren Rice (eds.) The Blackwell Companion to Phonology. Wiley-Blackwell, 1185-1203.
- Remijsen, B. & Gilley, L.G. ()2008. Why are three-level vowel length systems rare? Insights from Dinka (Luanyjang dialect). JPhon 36(2): 318-344.

Remijsen, B. & Ladd, D.R. (2008). The tone system of the Luanyjang dialect of Dinka. JALL 29(2), 149-189.

- Silverman, D. (1997). Tone sandhi in Comaltepec Chinantec. Language 73:473-492.
- Stevens, K.N. (1989). On the quantal nature of speech. JPhon 17, 3-45.
- Stevens, K.N. & S.J. Keyser (2010). Quantal theory, enhancement and overlap. JPhon 38, 10-19.

Xu, Y.(1998). Consistency of tone-syllable alignment across different syllable structures and speaking rates. *Phonetica* 55, 179-203. 33

Xu, Y. (1999). Effects of tone and focus on the formation and alignment of f₀ contours. *JPhon* 27, 55-105.

I gratefully acknowledge:

- Larry Hyman and Constance Kutsch-Lojenga. Their feedback spurred me to investigate the allophonic variation in the realisation of the Low toneme.
- SIL Sudan, for enabling me to work in Juba. Country directors Elizabeth Newport and May Yip sponsored fieldwork trips.
- Yi Xu, for sharing his trimming tool; Mike Allerhand, for help with R.
- The speakers: Leek Deng Mawut, Abraham Leek Makuei, and Emmanuel Deng Jogaak for the Nyarweng dialect; Simon Yak Deng, Akol Kongoor Reech, Abraham Duot de Khueer, and Aluel Ajaang Jibol for the Twic dialect; John Penn de Ngong, Peter Garang Nyarjok, Abraham Pach Alier, Job Anyang Aluong, James Maker Riak, Mary Agotich Buol for the Bor (South) dialect.
- The Arts & Humanities Research Council (UK), for funding through two research grants.

Phonological evidence for distinction between Fall and Low^{Fall}

• A sandhi rule in Bor South turns any Fall (HL) tonemes into a High toneme, when it is not in prepausal position.

/High-Low/ \rightarrow H / ___ #

• The Low^{Fall} – falling allotone of Low – is not affected – see example and descriptive stats on following slide.

ă−lèel (é–těne) ràaan person:S DECL-set.apart:3SG (EXT-here) 'He isolates a person (here).' ă−lêel (é-těne) ràaan

person:S DECL-provoke:PASS (EXT-here) 'The person is provoked (here).'

Figure – Averaged f0 traces on a normalized time axis, showing the realization of /HL/ vs. /L/ following /LH/, embedded in final (left) vs. medial position (right). Traces are averaged across 4 speakers. 37

Map of South Sudan region, showing Dinka dialects. The target dialects are highlighted:

,

 Dialect difference in phonological configuration: HL on a short stem vowel only in Bor North – Bor South has LH instead:

Bor North	ràaan	ă-lêl
Bor South	ràaan	ă-lěl
	person:SG DECL-isolate:PAS 'The person is being isolate	

- Dispersion Theory (Liljencrants & Lindblom 1972): the realisation of categories evolves so as to maximise contrast relative to other categories in the same space.
- Example on vowel systems, from Becker-Kristal (2010):

Symmetrical systems (192 languages) Right-crowded systems (26 languages)

Evidence for Dispersion Theory (Liljencrants & Lindblom 1972):

- Peak alignment of the fall allotone of Low is earlier in the Bor North dialect, where it contrasts with a later-aligned falling category on short vowels.
- The phonetic realisation of the fall allotone of Low in Bor North has evolved to maximise contrast.

Table – Means for peak alignment in Bor North, by vowel length (V, VV) and tone.

			Toneme	
		/L/ [fall]	/HL/	Difference
Vowel	V	-9	33	42
length	VV	-2	43	45

Methods

• In summary, the dataset hinges on manipulation of stem toneme, stem length, prefix length, and dialect:

Ň-сус	Ňv-сус	
Ň-су̀vс	Ϋν- ϲΫνς	
Ň-CŶVVC	ϔ ν-ϲϔννϲ	
Ň-сŶс	Ňv-су̂с	(Bor North only)
Ň-СŶVС	Ňv-cŶvc	
Ň-сŇс	vv-сvс	(Bor South only)