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Abstract

Probabillistic forecasts estimate the likelihood of future
seismicity in some specified time-space-magnitude
window, but a forecast can only truly be considered
meaningful if it demonstrates a degree of proficiency at
describing future seismicity. Log-Gaussian Cox processes
with a spatially varying, random intensity field may be used
to flexibly model the spatial pattern formed by the locations
of earthquakes. Using the Bayesian inlabru approach we fit
models that use different combinations of spatial
covariates that might help describe observed seismicity,
Including fault location, slip rate and strain rate. We use
these spatial models to develop time-independent
earthquake forecasts for California using both full and
declustered earthquake catalogs. We then test these
models in a pseudo-prospective way by comparing with
observed events over three contiguous 5-year time
periods, using forecast tests developed by the
Collaboratory for the Study of Earthquake Predictability
(CSEP) and implemented in the PyCSEP package (Savran .
et al, 2021). Fig. 2: Input covariates for inlabru models. Slip rates

We compare the inlabru seismicity forecasts with previous from UCERF3 (Field et al, 2014), distance to fault and

Forecast testing

We test the models using a collection of CSEP tests implemented in the pycsep library
(Savran et al, 2020) over three contiguous time periods (Fig.4). These tests aim to
compare a forecast of seismicity with observed events, either using grid-based or
synthetic-catalogue based forecasts.

Grid-based tests rely upon a uniform spatial grid and assume a Poisson variability in
the forecast to calculate a likelihood of observed events. The S-test sums over
magnitude bins to return a spatial consistency estimate and the N-test considers the
number of forecast events. Fig 5. shows the results for the 6 models.

Catalog-based forecasts rely upon synthetic catalogs simulated from the model itself to
construct a likelihood, relaxing Poisson assumptions. The pseudo-likelihood is
calculated using a point process likelihood estimate. Results are shown in Fig.6.
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Background

In light of the ever-increasing amount of data available
to modellers, we applied a point process method popular
In ecology to build a framework for constructing and
ranking seismicity models that include spatial covariates
In the point process (Bayliss et al, 2020). Here, we
further develop this method to produce full time-
Independent earthquake forecasts and test them in a
pseudo-prospective manner with the python package
pycsep (Savran et al, 2020).

The seismicity rate models are developed as log-
Gaussian Cox process (LGCP) models, where the
spatially-varying point process intensity is a function of

Grid-based forecasts
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Fig. 5: N-test (left), S-Test (centre) and L-test (right) results for the gridded models for the three testing time periods (earliest at

bottom). Error bars represent 95% confidence intervals on the forecast calculated assuming Poisson uncertainty. The symbol

represents the observed test statistic in each time period, with a green square symbol indicated the forecast passes the test and

Conclusions

_ Estimating abundance | . posteror mean disrbution | | a red circle symbol indicating that the model does not pass the test. Models are compared to the Helmstetter et al (2007) forecast The inlabru models do a good job of forecasting seismicity when tested in a pseudo-prospective manner. Each of the six
| omaring | 1 e (o v a as areference. tested models passed multiple consistency tests in several time periods.
[ models J i | The catalog-based forecasts are more likely to pass a consistency test than the grid-based forecasts, likely due to the relaxing
of the assumption of Poisson likelihood and the wider range of uncertainty that the simulated catalog models are able to
p Include. The models with slip rate (NK) in particular perform better in catalog-based testing.

Figure 1 (left): Flow chart describing the steps required to produce a
spatial seismicity model with inlabru. The stochastic partial differential
equation (SPDE) model sets up the random field component. Models
b are compared initially with their deviance information criterion (DIC).
Magnitudes are sampled from a Gutenberg-Richter (GR) or tapered
Gutenberg-Richter (TGR) distribution with fixed b/beta/Mc values.
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The performance of the full or declustered catalog (dc) models is highly dependent on the number of events occurring in the
testing period, with the spatial performance of the models generally very good when assessed by the catalog-type testing.
The next stage for our inlabru models is therefore a model with self-exciting clustering that can better capture local and short
temporal-scale seismicity. This will form the basis of future operational earthquake forecasting models with inlabru.
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