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Probabilistic forecasts estimate the likelihood of future 
seismicity in some specified time-space-magnitude 
window, but a forecast can only truly be considered 
meaningful if it demonstrates a degree of proficiency at 
describing future seismicity. Log-Gaussian Cox processes 
with a spatially varying, random intensity field may be used 
to flexibly model the spatial pattern formed by the locations 
of earthquakes. Using the Bayesian inlabru approach we fit 
models that use different combinations of spatial 
covariates that might help describe observed seismicity, 
including fault location, slip rate and strain rate. We use 
these spatial models to develop time-independent 
earthquake forecasts for California using both full and 
declustered earthquake catalogs. We then test these 
models in a pseudo-prospective way by comparing with 
observed events over three contiguous 5-year time 
periods, using forecast tests developed by the 
Collaboratory for the Study of Earthquake Predictability 
(CSEP) and implemented in the PyCSEP package (Savran 
et al, 2021).
We compare the inlabru seismicity forecasts with previous 
results for the California testing region and explore the 
differences in forecast performance arising from both input 
data and the use of grid-based or simulated catalog-based 
tests. We demonstrate that the inlabru models perform well 
overall in pseudo-prospective testing, especially when 
using the simulated catalog-based tests that make use of 
full model posteriors.
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Key functions / codes

pcmatern <- inla.spde2.pcmatern (mesh,   prior.sigma = c(..., ...),   prior.range = c(..., ...))
component2 <- coordinates ~ Smooth (coordinates, pcmatern) ± Intercept (1)

inla.mesh.2d (boundary=..., max.edge=..., min.angle=..., max.n=c..., max.n.strict=..., cutoff=..., crs=...)

sp :: coordinates (catalogue) <- c ("longitude", "latitude")
proj4string (catalogue) <- CRS (SRS_string = 'EPSG: ...')

predict (fit, pixels (mesh, mask=...), ~(Smooth + Intercept))

lgcp (components, data, domain , samplers, etc,)

plot (spde.posterior (fit, "Smooth", what = "..."))

predict (fit, ipoints (boundary, mesh), ~ sum(weight * exp (Smooth + Intercept)))
predict (fit, ipoints (boundary, mesh), ~ data.frame(N =... , dpois (..., lambda = sum (weight * exp (Smooth + Intercept))))

inla.nonconvex.hull (coordinates (loc), ...)      OR      read.delim (...) / read.csv (...) / readOGR (...) / etc. 

mesh$n
inla.mesh.assessment (mesh, spatial.range = ..., alpha = ..., dims = ...)

deltaIC (fit1, fit2, fit3, ...)

Main tasks Sub-tasksMain steps

setting priors of range and stdev

assessing range, stdev, and β

plotting range, variance, Matérn
covariance & correlation, etc.

Plotting predicted (log) intensity
on a pixel map 

loading real data OR
generating synthetic data
converting to SpatialPoint
attaching CRS

posterior mean distribution

DIC or WAIC ranking

based on observed points OR
using a specified polygon

tuning mesh quality parameters 

checking number of vertices
histogram and map of stdev

Data Modification

Ranking models

Mesh assessment

Mesh structure

Mesh boundary

SPDE model for RF

Estimating abundance

posterior distributions

Fitting LGCP function

Predicting intensity

2D time-idependent seismicity modelling with inlabru

factor covariates
continuous covariates
distance sampling data

Linear predictor for RF

Linear predictor for 
spatial covariates

SPDE + intercept

extending to full time-
independent forecasts

Mesh
building

Data
import

Specifying
model

Fitting 
LGCP model

Predicting
intensity

Comparing
models

1

2

3

4

6

7

5

magnitude distribution on grid
using GR
magnitude distribution from
simulated catalogues using TGRSpatial 

rate model

     pyCSEP package (Savran et al., 2021)

CSEP tests
number test (N-test)
magnitude test (M-test)
spatial test (S-test)
likelihood test (L-test)
pseudo-likelihood test (PL-test)

forecast_sampler (loglambda, bdy, mesh,  crs=crs_wgs84, num_events, b_val, m_min)
csep_grid_wrapper(lgcp_fit, lgcp_model, b_poly, dh, mag_min, mag_max, b_est, mesh)
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Spatial likelihood test
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Pseudolikelihood
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● Generate 10 000 samples from model posteriors
● Sample points according to ratio of maximum intensity in sample

 with rejection sampler
● Sample number of points as determined by overall model rate

● Sample catalog magnitudes from truncated GR 

Catalog-based forecasts

Fig 6: Catalog-based test results: Plots show the distribution of likelihoods for number of events (left), spatial distribution 
of events (centre) and combined pseudo-likelihood (right) from 10, 000 simulated catalogs. Observed test statistic for 
each test and time period is shown with a dashed line (n-test) or a symbol (S-test, pseufo-likelihood  test). 

Fig. 5: N-test (left), S-Test (centre) and L-test (right) results for the gridded models for the three testing time periods (earliest at 
bottom). Error bars represent 95% confidence intervals on the forecast calculated assuming Poisson uncertainty. The symbol 
represents the observed test statistic in each time period, with a green square symbol indicated the forecast passes the test and 
a red circle symbol indicating that the model does not pass the test. Models are compared to the Helmstetter et al (2007) forecast 
as a reference. 

● Project rates to uniform testing grid
● Retreive a-value from grid-rate

● Distribute magnitudes according to GR with fixed b-value

We test the models using a collection of CSEP tests implemented in the pycsep library 
(Savran et al, 2020) over three contiguous time periods (Fig.4). These tests aim to 
compare a forecast of seismicity with observed events, either using grid-based or 
synthetic-catalogue based forecasts.
Grid-based tests rely upon a uniform spatial grid and assume a Poisson variability in 
the forecast to calculate a likelihood of observed events. The S-test sums over 
magnitude bins to return a spatial consistency estimate and the N-test considers the 
number of forecast events. Fig 5. shows the results for the 6 models.
Catalog-based forecasts rely upon synthetic catalogs simulated from the model itself to 
construct a likelihood, relaxing Poisson assumptions. The pseudo-likelihood is 
calculated using a point process likelihood estimate. Results are shown in Fig.6.

The inlabru models do a good job of forecasting seismicity when tested in a pseudo-prospective manner. Each of the six 
tested models passed multiple consistency tests in several time periods.
The catalog-based forecasts are more likely to pass a consistency test than the grid-based forecasts, likely due to the relaxing 
of the assumption of Poisson likelihood and the wider range of uncertainty that the simulated catalog models are able to 
include. The models with slip rate (NK) in particular perform better in catalog-based testing. 

The performance of the full or declustered catalog (dc) models is highly dependent on the number of events occurring in the 
testing period, with the spatial performance of the models generally very good when assessed by the catalog-type testing. 
The next stage for our inlabru models is therefore a model with self-exciting clustering that can better capture local and short 
temporal-scale seismicity. This will form the basis of future operational earthquake forecasting models with inlabru.

Conclusions

Forecast testing

Grid-based forecasts
In light of the ever-increasing amount of data available 
to modellers, we applied a point process method popular 
in ecology to build a framework for constructing and 
ranking seismicity models that include spatial covariates 
in the point process (Bayliss et al, 2020). Here, we 
further develop this method to produce full time-
independent earthquake forecasts and test them in a 
pseudo-prospective manner with the python package 
pycsep (Savran et al, 2020).
The seismicity rate models are developed as log-
Gaussian Cox process (LGCP) models, where the 
spatially-varying point process intensity is a function of 
some included spatial covariates (Fig. 2) and a 
Gaussian random field (RF) that accounts for spatial 
structure not described by the covariates. We fit these 
models with the R package inlabru (Bachl et al, 2019), 
which uses integrated nested Laplace approximations to 
estimate model parameter posteriors. The resulting 
posterior mean intensity is shown in Fig. 3. The steps 
involved in modelling seismicity in this way are shown in 
Fig 1., with step 7 being the main focus of this poster. 

Figure 1 (left): Flow chart describing the steps required to produce a 
spatial seismicity model with inlabru. The stochastic partial differential 
equation (SPDE) model sets up the random field component. Models 
are compared initially with their deviance information criterion (DIC). 
Magnitudes are sampled from a Gutenberg-Richter (GR) or tapered 
Gutenberg-Richter (TGR) distribution with fixed b/beta/Mc values.

Fig. 3: Posterior mean (log) intensities for the six tested models covering the California 
testing region (step 5 of workflow in Fig. 1.). The top row shows the models using full 
catalogs while the bottom row shows the results when the input catalogs have been 
declustered (dc).
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Spatial seismicity rate modelInput spatial covariates
Full catalog

Declustered catalog

Fig. 2: Input covariates for inlabru models. Slip rates 
from UCERF3 (Field et al, 2014), distance to fault and 
smoothed seismicity are also derived from UCERF3 
data. Strain rates from global strain rate model 
(Kreemer et al. 2014)

Fig. 4: Training and 
testing data for the 
model and three 
testing periods (top 
left, colors correspond 
to Fig. 6). The number 
of events per year (top 
right) and spatial 
distribution of test 
catalogs (bottom row)Background
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