
Improvements for Inf2-SEPP 

Cristina Adriana Alexandru

Cristina.Alexandru@ed.ac.uk



Introduction to Inf2-SEPP
• Compulsory UG2 course for most of our degrees

• Very large: 224 students this year

• Employing 39 teaching support members of staff: 2 TAs, 16 tutors, 9 demonstrators, 10 

coursework markers, 2 exam markers

• Split into: software engineering (SE) part and professional practice (ProP) part



Current format
• Assessment is 100% coursework:

• For SE (75%): groupwork during a SE project in 3 parts: requirements, design, implementation/testing

• For ProP (25%): an individual essay on professional issues during SE project part 3

• Marking criteria-based per task, additive between tasks; some criteria conditioned by other tasks.

• 3 X 50-minute lectures/week: 2 for SE, 1 for ProP/guest lecture.

• 2 X drop-in 50-minute labs/week starting in week 2, to work on coursework; No exercise sheets.

• 5 X 1.5-hour tutorials every 1-2 weeks starting in week 2; Exercise sheets for practice of concepts 

for coursework.

• 2 X 50 -minute office hours/week: one for SE, one for ProP



Problems and questions
1) Budget being spent on student support in labs/tutorials:

• Attendance in labs and tutorials has been low, with surges before coursework deadlines

• The budget on tutor/demonstrator hours would better be spent on marking and TA work

Questions: How can I make labs/tutorials more resource effective

• Some ideas:

• Motivating students to attend tutorials more- e.g. credit for bringing pre-prepared solutions

• Experimenting with larger tutorial groups, but how large is 1) still interactive enough for students, 2) 

manageable?

• Merging tutorial and lab components by having longer labs with tasks, but are labs a good idea for non-

programming parts?



Problems and questions
2) Workload/hours spent designing coursework each year:

• Similar tasks, but different case study each year due to: students making repositories public, student 

request for solutions=> writing case study very labour intensive

• Additional small experimentation/redesign each year

• These have resulted in exceeding time budgeted for the TAs

Question: How can I make coursework design less labour intensive?

Some ideas:

• System spec that can be extended in many ways; Adding to it each year.

• Re-using older case study, with some strategic changes that makes it hard to adapt past solution.



Problems and questions
3) Motivating practical work

• The course focuses on requirements, design, UML diagramming, teamwork, professional practice, writing 
good code and tests… but code and tests come late in the coursework (week 8)

• The student rep mentioned that many students want to code more in this course… but maybe some of the 
unheard students are glad it’s not coding-intensive?

Question: How can I offer the opportunity for some- but not all- to do more coding in a SE course? Or 
else, how to motivate students on the value of the existing work?

Some ideas:

• Applying agile approach to work throughout so that students do iterations involving code straight from the 
onset; But this would be a large change and we wouldn’t be able to maintain CW parts-> BoS approval?

• Getting students to catch-up on programming through small preparatory tasks in CW parts 1 and 2. E.g. 
working with a codebase (library, API) that they would use later. But would this be assessed? The CW is 
already large.



Problems and questions
4) Motivating guest lecture attendance

• Very low attendance in online guest lectures this year

Question: How can I encourage students to attend guest lectures, which are very useful for them?

Some ideas:

• Making them face-to-face could help

• More advertising

• The guest lecturers could also give out tasks/ even coursework ones

• Guest lecturers demonstrating things in practice



Do you have any suggestions?
1) How can I make labs/tutorials more resource effective

2) How can I make coursework design less labour intensive, while still launching solutions 

each year?

3) How can I offer the opportunity for some students- but not all- to do more coding in a SE 

course? Or else, how to motivate students on the value of the existing work?

4) How can I encourage students to attend guest lectures, which are very useful for them?

Thank you!


