
Peer learning in online programming courses:

pair programming labs and peer code review

Charlotte Desvages

Monday 7th June 2021

School of Mathematics, University of Edinburgh, UK



Background: Computing labs in

the School of Maths



Background: Computing labs in the School of Maths

• Computing courses from Y1 to MSc, most are taught in either Python or R.

• Topics include numerical analysis, statistics, data science, machine learning,

optimisation. . .

• Many courses run drop-in computer labs: students come sit in the lab and

work through exercises, tutors walk around the room to check in and help.

• Typically, during a lab, pairs and triples form organically as students sit next

to friends.

1



Moving online: Summer 2020

• Problem: computer labs (with shared dirty keyboards!) are not an optimal

use of our teaching spaces for hybrid, socially-distanced teaching.

→ Early decision: all our computer labs will be fully online.

• New problem: keeping students engaged can be more difficult in online

courses, and our students are not used to distance learning.

→ the “passive” drop-in lab is clearly not the best use of our limited contact

time with the students.

Having to rethink course delivery provided an opportunity to refresh the syllabus

and rethink learning outcomes, to emphasise good programming practice and

familiarise students with standard workflows.

2



Combining collaborative learning and good practice

How can I promote peer learning and effective collaboration in an online

programming class?

1. Synchronous:

• Pair programming in problem-based labs

• Small group discussion-based activity

• Small group peer code review

2. Asynchronous:

• Discussion board (Piazza)

• Peer-assessed code review task

3



Pair programming as a

pedagogical tool



The pair programming workflow

4



The pair programming workflow

5



Motivations for trying pair programming

• Small groups (2 or 3): all students take an active role in solving the task,

(have to) talk to each other.

• Structured/scripted roles: less time and cognitive effort spent on figuring

out a way to collaborate efficiently/productively (“unscripted” collaboration

can be particularly unnatural to navigate in a virtual “room”).

• Tutors can’t “keep an eye” on the whole room and identify who needs help:

working in pairs gives everyone an immediately accessible source of help,

minimises tutor time spent on “trivial” mistakes (syntax errors, typos. . . ).

• Introducing standard professional practice.

6



Distributed/remote pair

programming



Session organisation

7



Session organisation

8



Inside a breakout room

9



Inside a breakout room

1. Driver forks a template GitHub repo containing the task; navigator joins the

forked repo (easily set up with GitHub Classroom).

2. Driver clones the repo, shares their screen, and starts working on the task.

3. Navigator reads instructions, actively observes, talks to the driver, checks

documentation. . .

4. They switch roles after ∼15 minutes. Old driver commits and pushes their

changes, new driver pulls, shares their screen, and continues.

10



Getting help

11



Peer-assessed code review



Motivations for peer code review

• Peer learning by seeing how others have approached the same task.

• Building good habits: students are asked to assess robust testing,

commenting and style, code structure. . .

• Helping to build a sense of community: students don’t have as much

opportunity to work and learn together.

• Introducing standard professional practice.

• Better understanding of the assessment process.

12



Planning

• Code review tasks were alternating with quizzes as weekly homework (10%

total grade).

• Set over 2 weeks: submit your solution by the end of the first week,

peer-assess 3 submissions by the end of the second week.

• In code review weeks, the synchronous lab was a small group scaffolding +

peer review activity:

• Peer review only was not particularly successful. Students would be finished

in quite a short time, and the submissions they had to actually assess were

not those from their discussion group.

• Starting the activity with a scaffolding task was helpful: e.g. a debugging

task to practice understanding error traces and troubleshooting, a discussion

task on useful commenting and code style. As seen with pair programming,

structure helps! 13



Setup using Moodle Workshop

• I used the Moodle Workshop plugin, built for peer-assessed tasks.

• The grade is calculated as 50% peer-assessed, and 50% for how close your

assessment was to the consensus between the 3 reviewers.

• The task description included the problem specification, instructions for

submission format, and marking scheme to be used.

14



Setup using Moodle Workshop

Moderation:

• As instructor, I could override grades, add my own assessment, or change

weights of different assessments.

• I checked a sample of random submissions/assessments each week.

• I set up a form which students could use to request further instructor

moderation.

15



How did it go?



Cohorts

Pair programming and peer-assessed code reviews deployed in two courses:

• Semester 1: Python Programming (MSc, 280 students). Introductory

Python course, focused on programming skills, overviewing some

applications in applied maths and data science.

• Semester 2: Computing and Numerics (Y2, 250 students). Introductory

Python course, but learning outcomes focused on computational

mathematics and numerical methods.

16



Student feedback: the positives

“What do you consider to be the most useful aspects of the workshops?”

• Most of the responses point at cooperation, discussion, peer learning as

positive aspects.

• Other positive comments: the workshop tasks are interesting, I get to apply

the skills I’ve learned, I can get good help from tutors. 17



Student feedback: the positives

Some representative comments heard/read from students:

• “This is the most ’social’ course I have” / “This workshop is my main social

interaction for the week”

• “I didn’t interact much with tutors since we often solved coding issues by

ourselves. This is a good feature of the workshop.”

• “[Workshops] allow you to have interaction with other students and help

from tutors at the same time.”

• “It was good to meet people and learn to pair program.”

• “Peer (sic) programming is great. I’m not sure if this was a new addition to

the course or not, but I hope it stays.”

• “Working with others is also a real benefit as it allows you to learn from

others, or teach others which further consolidates your own learning.” 18



Student feedback: the negatives

• Most of the negative feedback on pair programming labs mentions the

lack of time – 1 hour is too short.

• Some friction with technical issues, complicated workflow with

git/GitHub/IDE for beginners, particularly at the start of the semester. This

improved as the students got used to their tools.

• Some issues with incompatible pairs.

• Most of the negative feedback on code reviews was what I expected:

students don’t feel comfortable being assessed for credit by another student.

19



Student feedback: the negatives

Some ad-hoc comments heard/read from students:

• “I didn’t like the format (work in pairs) so I decided not to go to many of

them.”

• “There are a lot of tasks for the short time of the workshops usually. Also

pair programming online is sometimes just watching another person googling

something, so I’m not really sure if Pair Programming is the way to go for

the workshops.”

• “I found [the workshops] useful when I found a good group of people to

work with.”

• “Too much work not enough time. I would have benefited from a two hour

workshop instead.”

20



Incompatible pairs

As a “non-specialist” cohort, levels of programming experience (and even general

computer literacy) vary immensely between the students coming into the course.

Dysfunctional pairs were typically:

• very experienced + complete beginner (a frustrating experience for both),

• two complete beginners (got stuck very easily).

Zoom update in Autumn 2020 allowed attendees to choose their own breakout

rooms. Issues with mismatched pairs and lack of confidence from beginners were

greatly reduced by:

• letting students choose their pair (so they could work with a friend),

• letting students work in triples instead of pairs, with a rotating driver and

two navigators.
21



Lessons from lockdown: what’s

next?



Lessons from lockdown: what’s next?

The fast move to hybrid/online teaching over the summer gave us the

momentum to make changes and try new things.

Overall, pair programming was a success in fostering productive cooperation

and peer-learning in an online setting, for students who attended. The main

issues were around time and pairing compatibility.

What can we take with us as we progressively come back to campus?

22



Back to school

• “Tutorials” in our Maths courses are ran as collaborative workshops,

students work together in small groups to solve exercises.

• How do we make collaborative computer workshops successful, online or in a

classroom?
23


	Background: Computing labs in the School of Maths
	Pair programming as a pedagogical tool
	Distributed/remote pair programming
	Peer-assessed code review
	How did it go?
	Lessons from lockdown: what's next?

