HyStorPor-Introductory remarks

Courtney West 12th July 2023

About SGN

We manage the gas networks in the south of England, Scotland and Northern Ireland.

Our 75,000km network of pipes delivers gas to 5.9 million homes, with 2 million of them in Scotland. We serve 14 million people and businesses, all day, every day.

We manage the gas emergency service, a major gas mains replacement programme, including new connections, reinforcements and diversions on our networks.

We're here to keep our customers safe and warm.

UK energy & gas demand

- Energy system relies on three primary energy vectors electricity, natural gas and petroleum to satisfy energy needs.
- There is a strong dependence on natural gas for security of supply, with majority of demand through domestic heat.
- Imports to the UK provide resilience and security of supply correlating with domestic heat demand peak in winter months.
- Gas demand has a complex profile with extreme ramps up in demand in morning and evening due to customer behaviours

UK and Scottish Government decarbonisation targets

Scotland's Renewable Resources

- 9GW operational onshore wind
- 20GW target by 2030 supported by existing pipeline of 12GW in development
- 10GW of offshore wind projects operational, under construction or in development
- 28GW in Scotwind leasing round, with Innovation and Targeted Oil & Gas (INTOG) leasing round underway
- Growing renewable energy generation presents challenges:
 - Low supply of energy in high demand
 - High supply of energy in low demand

Energy storage required to meet net zero

- Renewable energy constraint payments are forecast to rise to £1-2.5 bn/year peak in the mid-2020s.
- Grid constraints act as a barrier to the UK's 100 GW offshore wind pipeline.
- Energy storage at scale is needed to maximise energy recovery from the UK's vast wind and other variable renewable resources.

- Following rapid expansion of offshore wind, there will continue to be periods of time with almost no wind generation and very high electricity prices.
 - For example, on 12 December 2022, with very low temperatures, wind generation was only around 1 GW (compared to peak wind output of over 20 GW)

Physical hydrogen storage needed in the UK

- Of main electricity storage options, batteries are short duration and not at sufficient scale and there are limited pumped hydro sites
- Hydrogen storage offers a solution to electricity grid constraints enabling renewable capacity installation and maximum use of capacity
- Long Duration Energy Storage report for BEIS concluded longer duration storage solutions reduce net zero system costs by £13-24 billion a year
- As for natural gas, a level of indigenous hydrogen production and storage is needed to support energy security, particularly in times of turbulent geopolitics, as Europe is experiencing today.

Figure FL.1: Electricity and gas storage capacity in 2020

Minimum linepack in GB gas network
Other electricity storage capacity
Gas storage capacity (excluding LNG)
Pumped hydro stored capacity

Geological storage at scale required

- Geological storage is cheaper, more energy efficient, and at the scale required
- In the case of salt caverns, it is a mature technology but work into depleted fields and aquifers is vital providing the scale for large scale seasonal storage for UK resilience

Advanced Hydrogen Research in Scotland:

Investigating factors influencing inter-seasonal storage of hydrogen in porous reservoirs.

Thank you

Courtney.west@sgn.co.uk

SGN Your gas. Our network.