Convergent Global Optimisation via Constructive Real Numbers

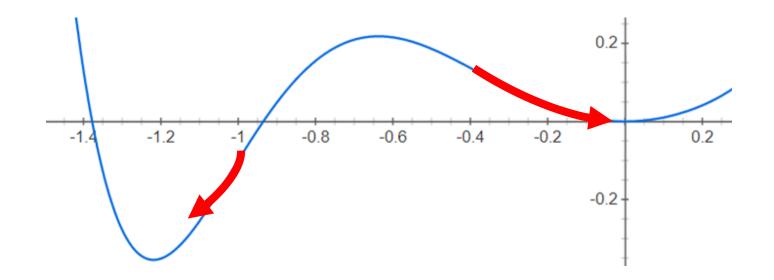
Todd Waugh Ambridge (University of Birmingham) 11th March 2021

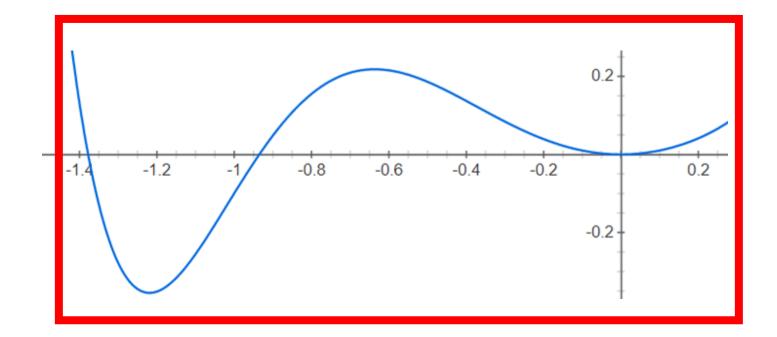
In this talk I will...

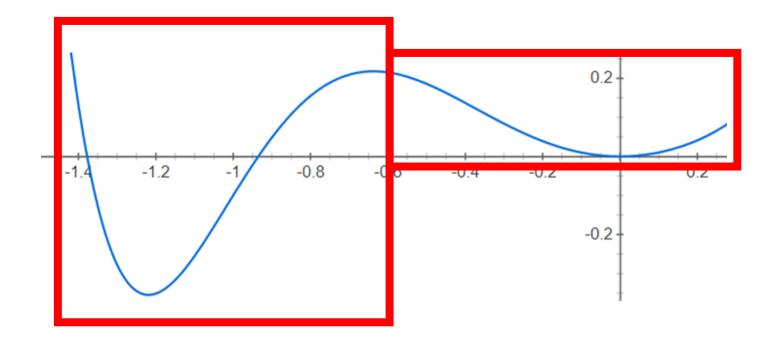
- Introduce convergent global optimisation
- Discuss how **floating-point real numbers** are an inappropriate data type for convergent global optimisation
- Introduce two types for arbitrary-precision real numbers
- Show how **global optimisation converges** on one of these types
- Apply this framework to machine learning to exhibit **convergence properties for regression** on arbitrary 'searchable' data types

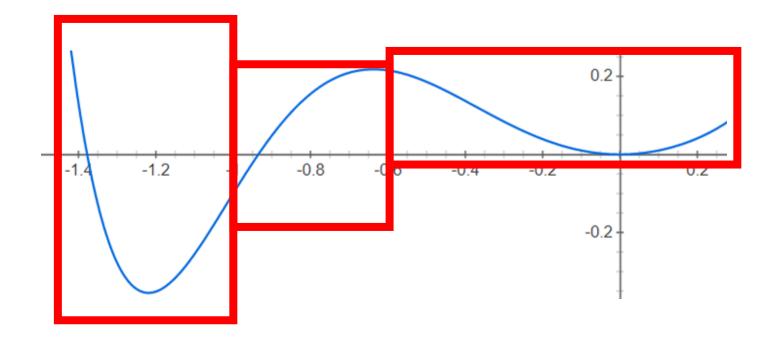
Optimisation: Efficiency vs. Correctness

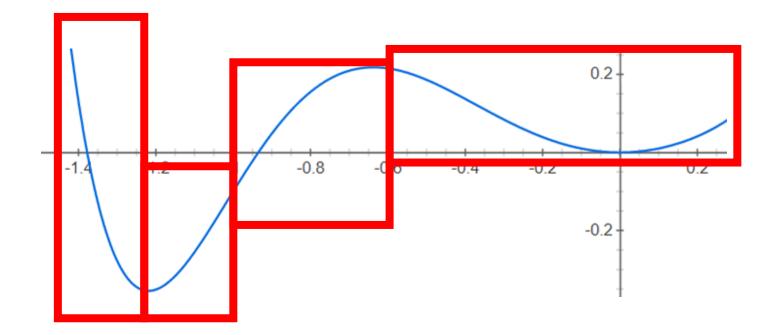
- Optimisation is a core component of supervised machine learning.
- It has broad applications to function approximation algorithms, such as **interpolation** and **regression**.
- Efficient **local optimisation** algorithms, e.g. **gradient descent**, have been studied extensively *and applied to deep learning!*
- Convergent **global optimisation** algorithms, e.g. **branch-and-bound**, are much less practically available *but never yield an incorrect result!*

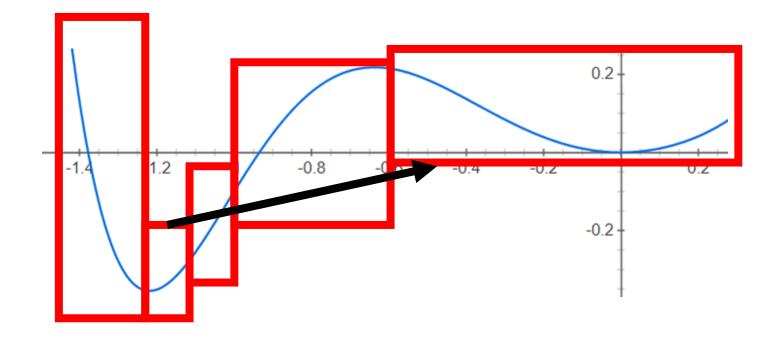


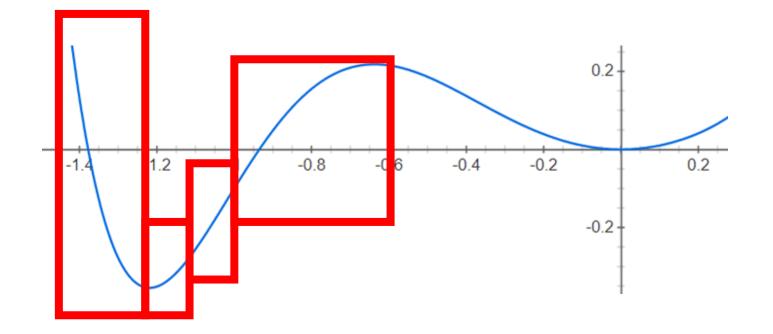


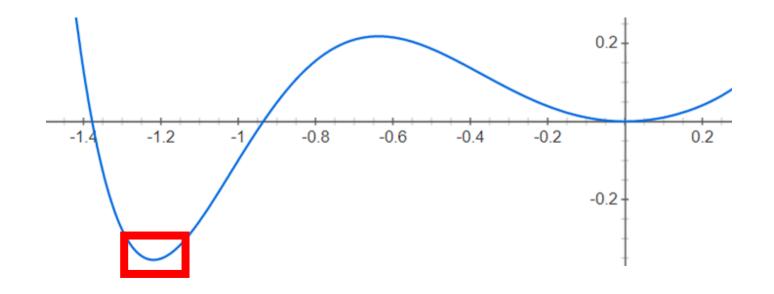










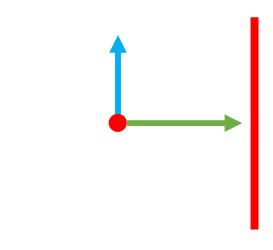


- Gradient descent: Local minima via derivative of function
- Branch-and-bound: *Global* minima via *continuity* of function



Convergence of Global Optimisation

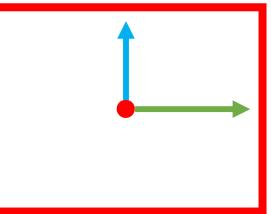
• A function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* if it comes equipped with a *modulus of continuity* function $m : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that, m(x, |x - y|).



L. H. de Figueiredo, R. J. V. Iwaarden, and J. Stolfi. Fast interval branch-and-bound methods for unconstrained global optimization with affine arithmetic. 1997.

Convergence of Global Optimisation

- A function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* if it comes equipped with a *modulus of continuity* function $m : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that, $|f(x) - f(y)| \le m(x, |x - y|)$.
- A global optimisation algorithm is *convergent* if, for any $\epsilon : \mathbb{R}$, we can compute $x_0 : \mathbb{R}$ such that $|f(x_0) f(x)| < \epsilon$.
- A branch-and-bound algorithm converges if:
 - 1. The function is continuous,
 - 2. The *branching* procedure ensures the width of the widest box tends to 0,
 - 3. The *bounding* procedure ensures that, as the width of a box decreases, so too does its height.



Global Optimisation using Floating-point Reals

- When computer scientists talk about "real numbers", they often mean "floating-point numbers" *for obvious reasons*!
- However, floats are an inappropriate data type for performing global optimisation...

```
int main()
  float x = 0.0;
  float y = 0.0;
 for (int i = 0; i < 10; i++) {
      x += 0.1;
      for (int j = 0; j < 10; j++) {
            y += 0.01;
      }
  }
  std::cout << x << std::endl;</pre>
  std::cout << y << std::endl;</pre>
}
```

```
1
0.999999
```

EXPLOITING VERIFIED NEURAL NETWORKS VIA FLOATING POINT NUMERICAL ERROR

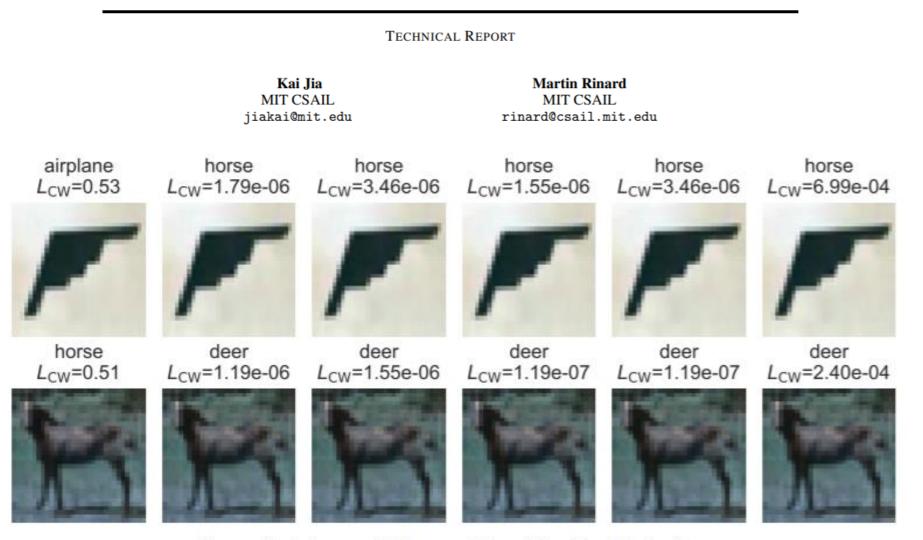
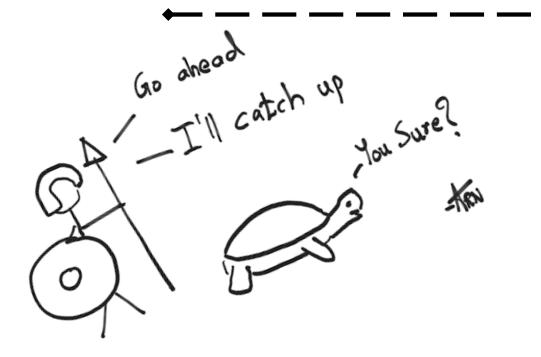
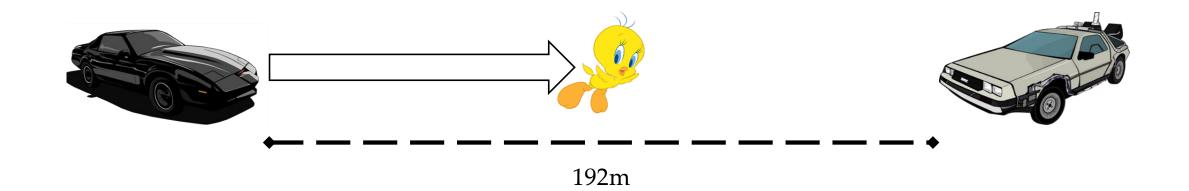
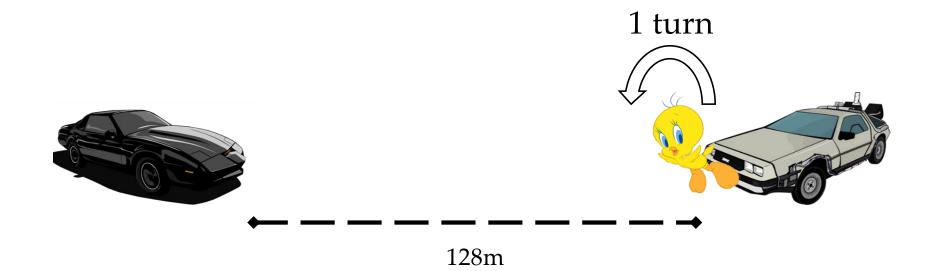


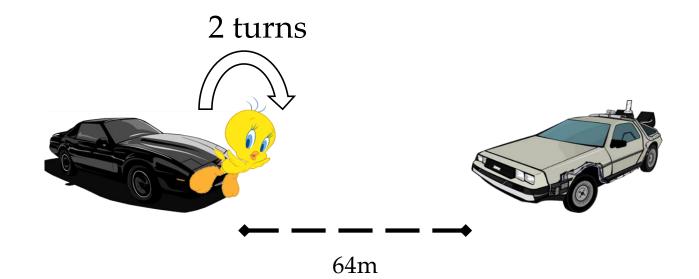
Figure 3: Adversarial Images Found by Our Method

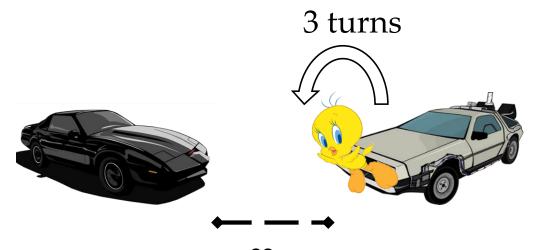


256m

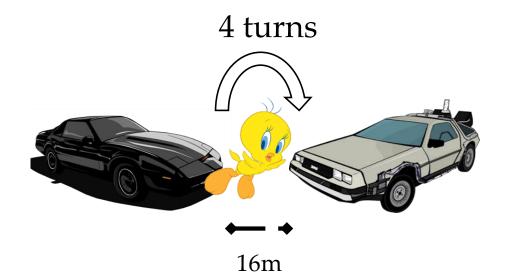


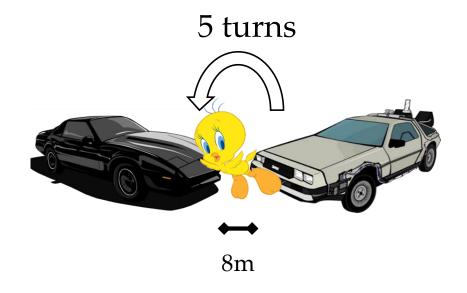


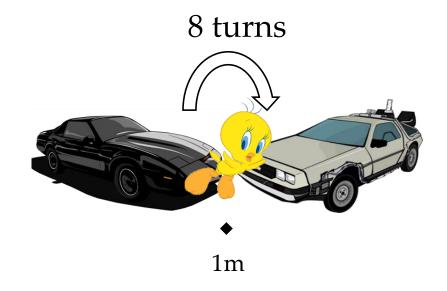


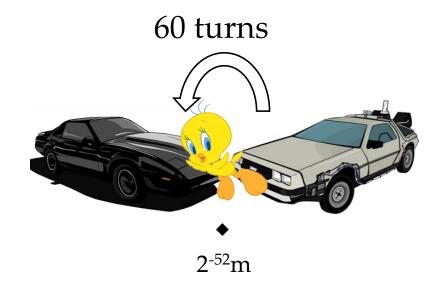


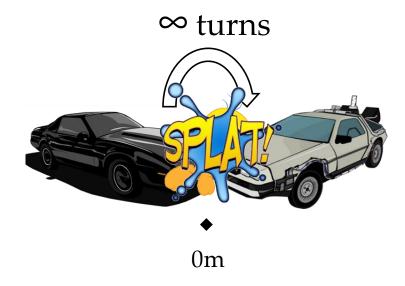
32m

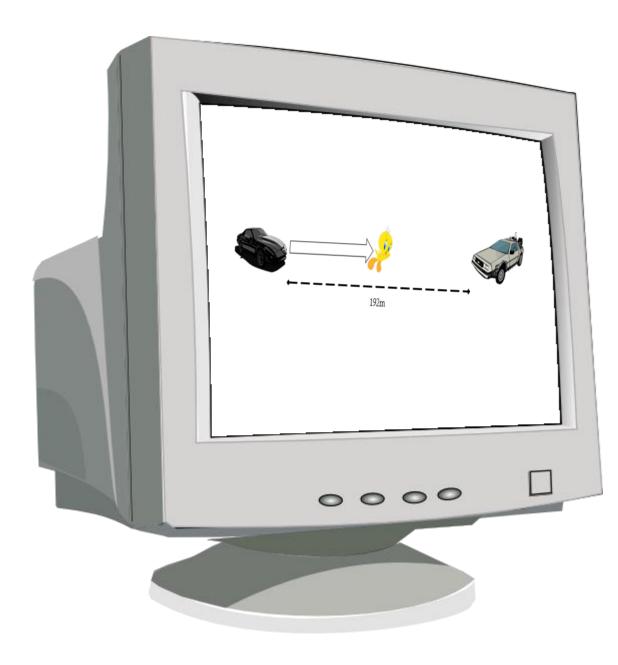


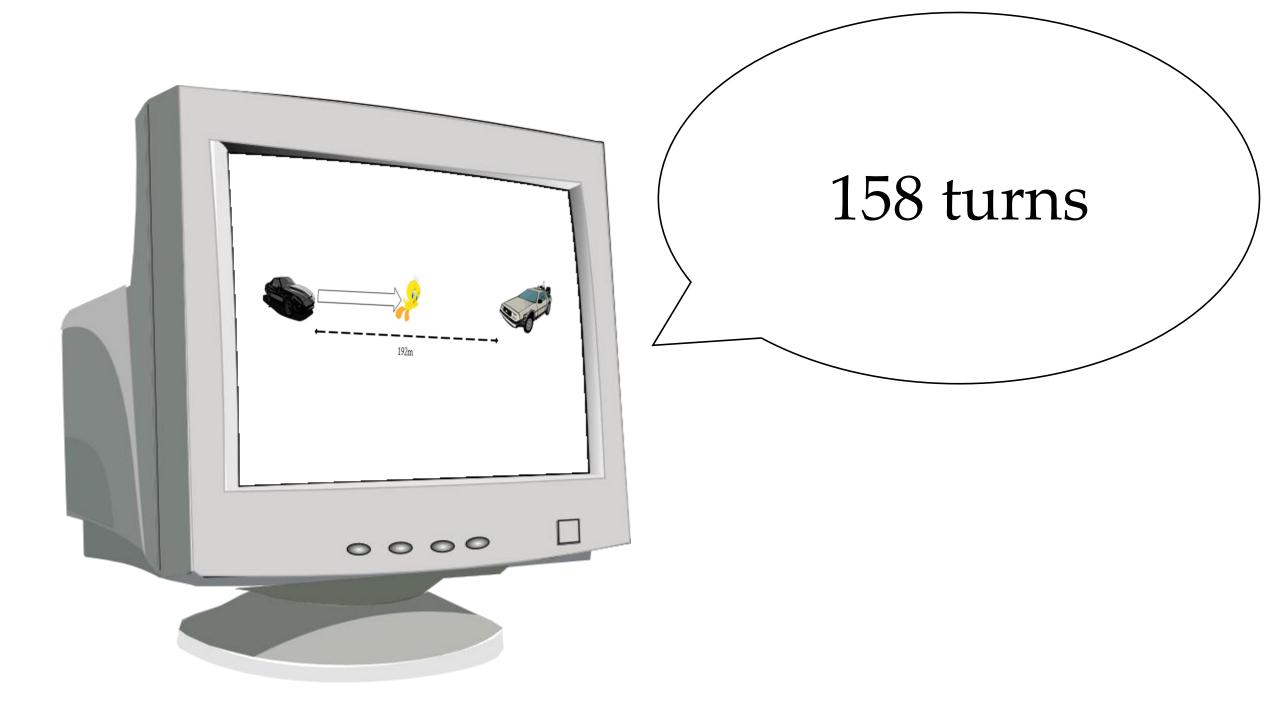


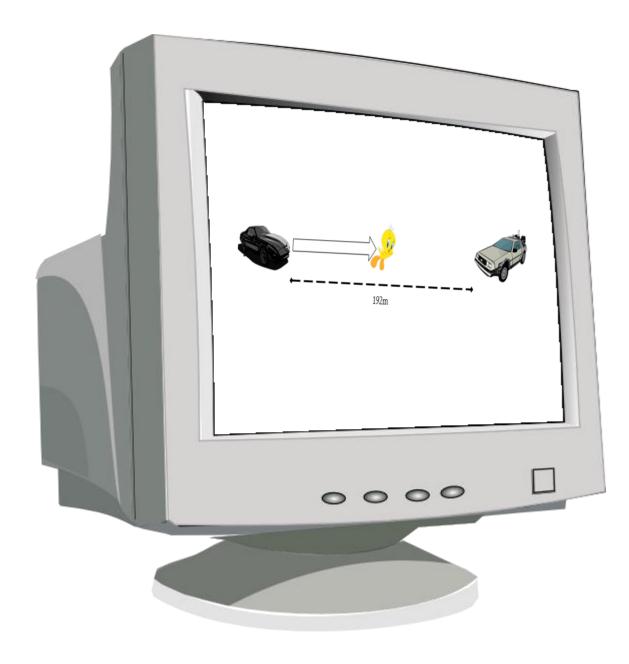








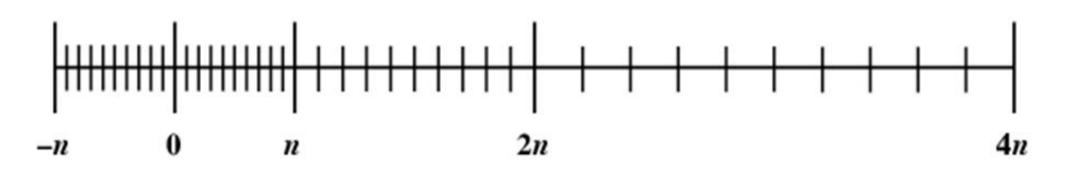




Is 158 a good simulation of infinity?

Global Optimisation using Floating-point Reals

- These errors are, in practice, often unimportant but sometimes they are *crucial*.
- Floating-point has a very high level of precision but this *granularity* is *fixed*.
 - Floating-point is a 'discrete' data type.
 - This affects both continuity and convergence.
- Global optimisation convergence cannot be guaranteed.
- We thus require a 'continuous' data type for arbitrary-precision real numbers...



A. B. Booij, "Analysis in univalent type theory," Ph.D. dissertation, University of Birmingham, 2020.

What are Constructive Reals?

- **Constructive reals** are those real numbers *x* : *R* that can be constructively *located*: either *p* < *x* or *x* < *q* for any *p*, *q*: *Q*.
- **Constructive reals** are those real numbers *x* : *R* that can be reconstructed by an algorithm to *any degree of precision*.
 - A pair (i, T) where i = floor(x) and $T: N^+ \rightarrow \{1 \dots 10\}$ where T(n) is the *n*th decimal digit of *x*.
 - A function $f: Z \to Z$ such that $|x 2^n * f(n)| \le 2^{n-1}$.
- **Constructive reals** are a data type where the *granularity* of the real line is *dynamic* and converges to the real line itself.

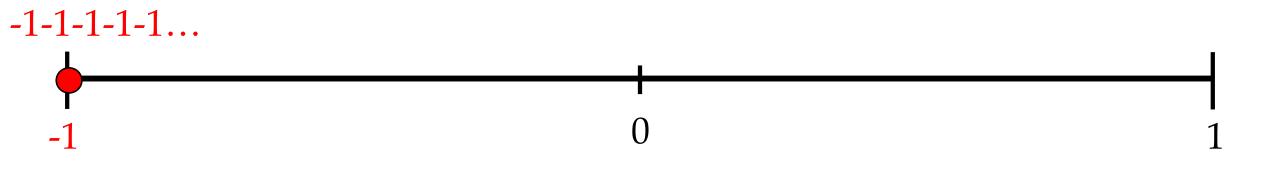
P. Di Gianantonio, "A functional approach to computability on real numbers," *European Association For Theoretical Computer Science*, vol. 50, pp. 518–518, 1993.

Implementations of Constructive Reals

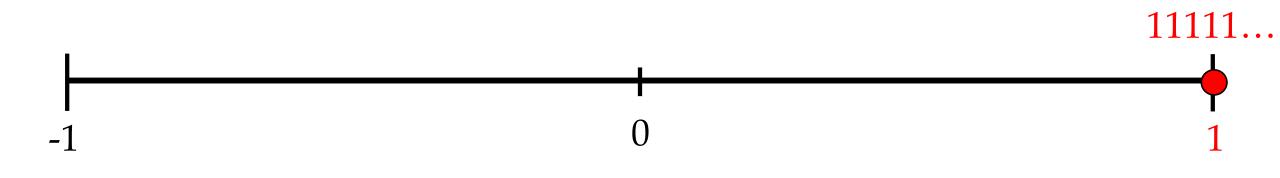
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.

Implementations of Constructive Reals

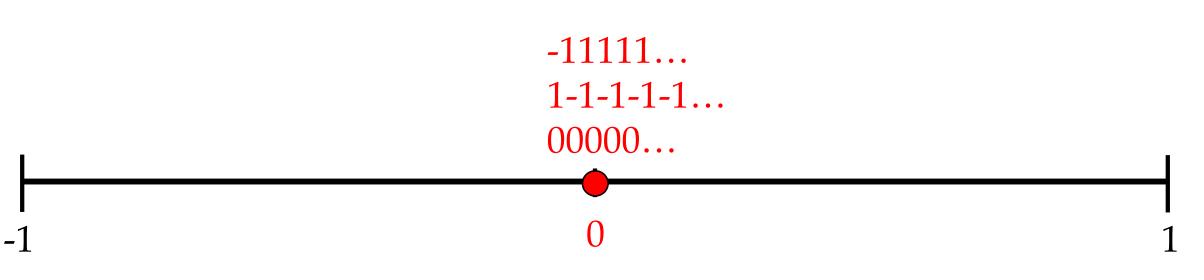
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



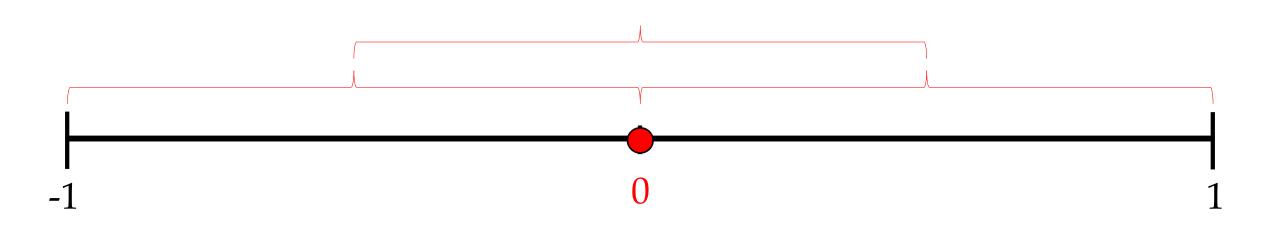
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $\llbracket \alpha \rrbracket := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



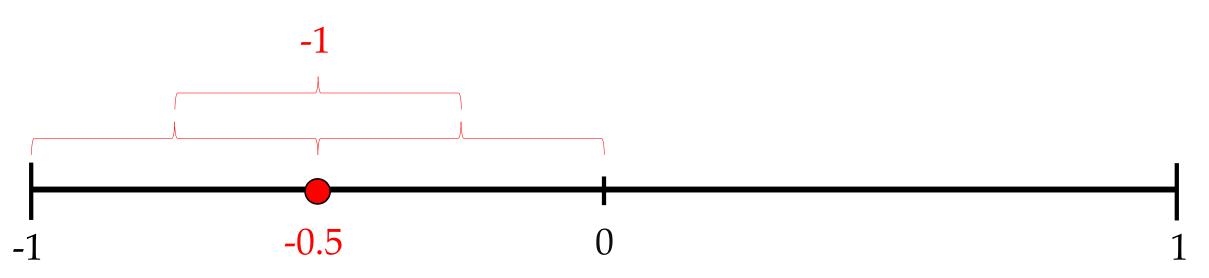
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



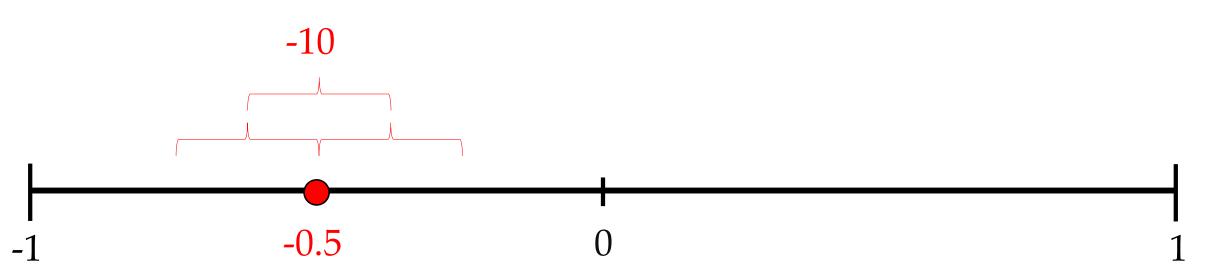
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $\llbracket \alpha \rrbracket := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



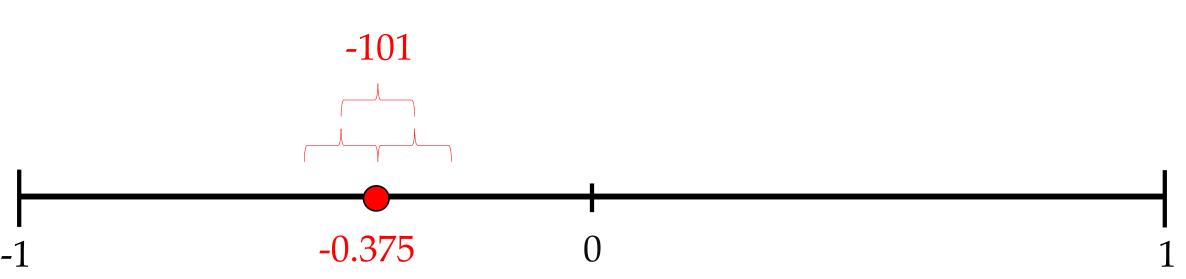
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



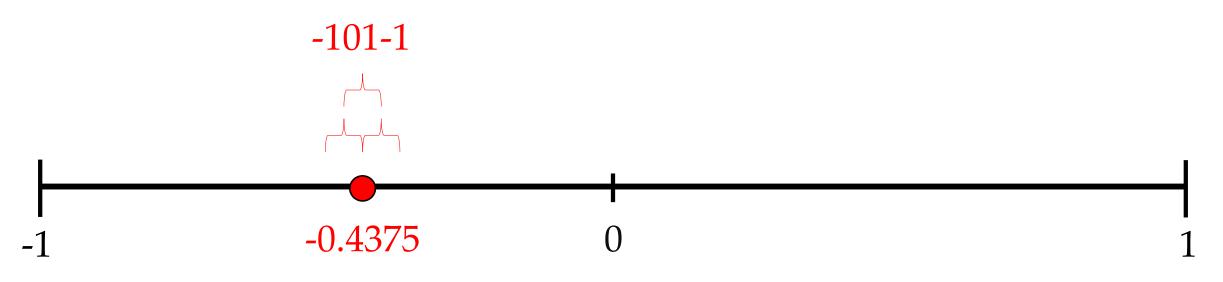
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



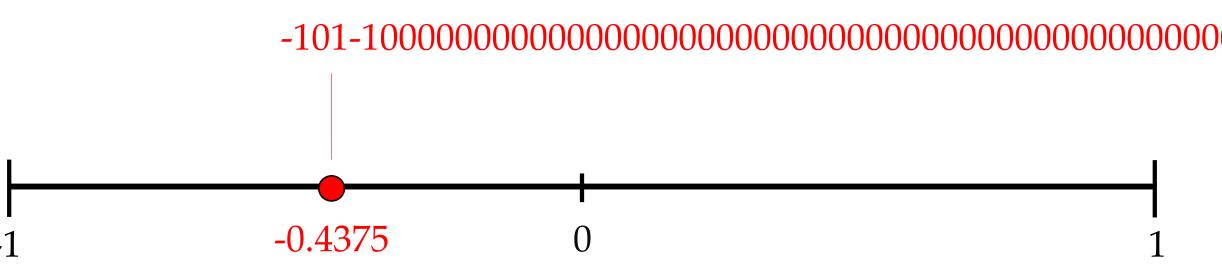
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



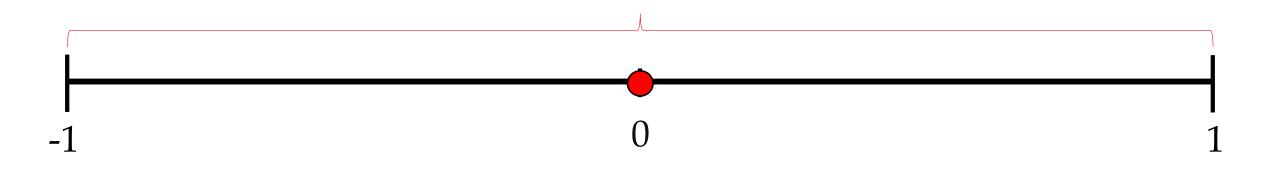
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $\llbracket \alpha \rrbracket := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



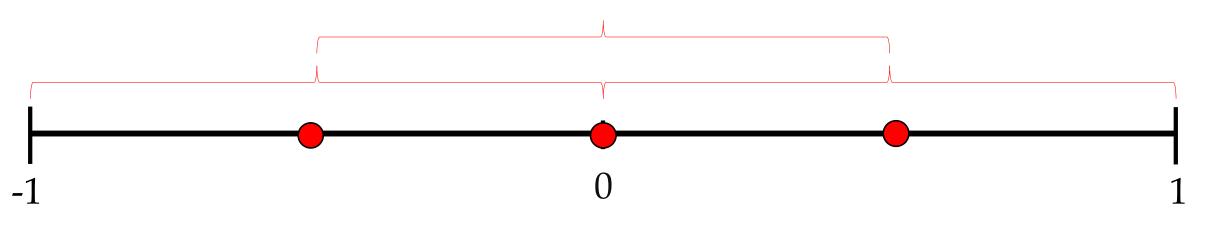
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.



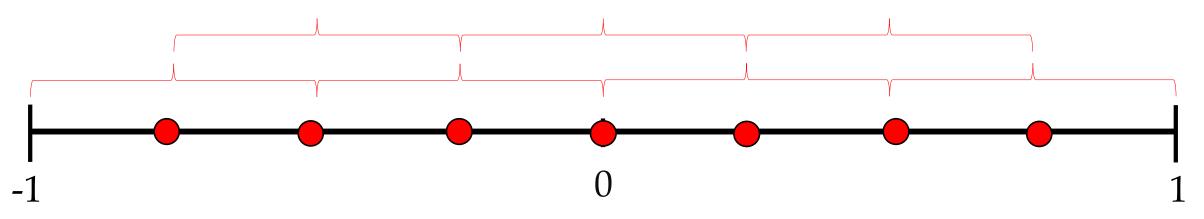
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.
- Truncation gives us *dynamic granularity*!



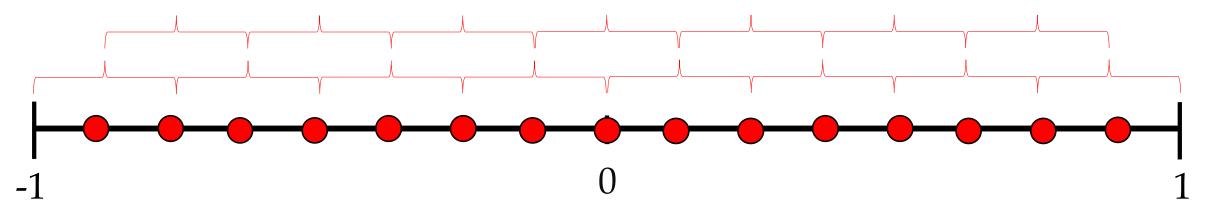
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.
- Truncation gives us *dynamic granularity*!



- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.
- Truncation gives us *dynamic granularity*!



- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.
- Truncation gives us *dynamic granularity*!



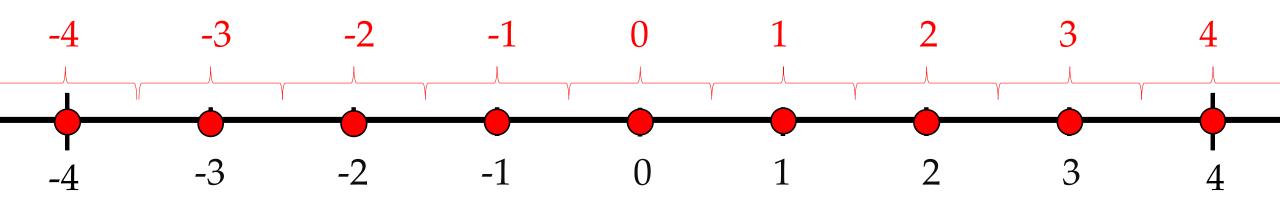
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2^{n+1}}.$
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.
- Truncation gives us *dynamic granularity*!

M. Escardo, "Real number computation in Haskell with real numbers ' represented as infinite sequences of digits," 2011.

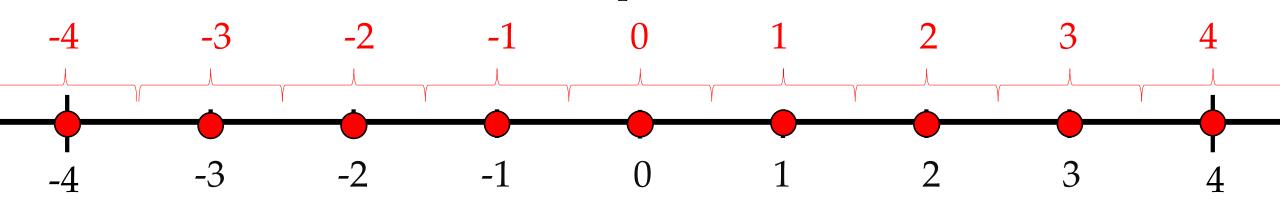
- **Signed-digit representation:** Numbers in [-n, n] can be represented as infinitary sequences $\alpha : N \to \{-n, ..., n\}$ such that, $[\![\alpha]\!] := \sum_{n=0}^{\infty} \frac{\alpha_n}{2n+1}$.
- For example, we represent [-1,1] by streams of type $N \rightarrow \{-1,0,1\}$.
- Truncation gives us *dynamic granularity*!
- There are defined *continuous* functions for negation, midpoint, infinitary midpoint, truncated addition and multiplication.
- The *modulus of continuity* for these functions tells us how many digits of input we require for each digit of output.

H.-J. Boehm, "Small-data computing: correct calculator arithmetic," *Communications of the ACM*, vol. 60, no. 8, pp. 44–49, 2017.

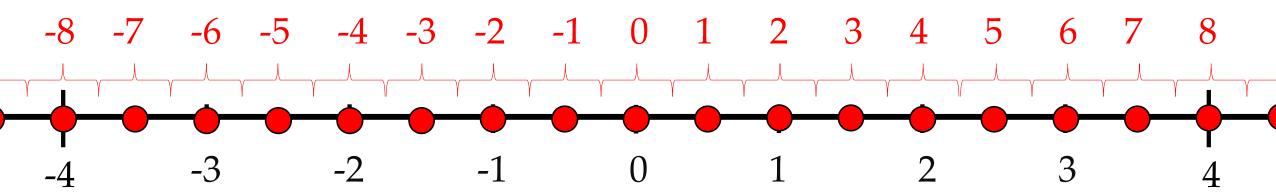
- **Boehm encodings:** Real numbers are represented as Java objects *x* of the class *CR*, which has the method *BigInteger approx(int n)* satisfying $|[x]| 2^n * x$. *approx(n)* $| \le 2^{n-1}$.
- For example, *PI*. *approx*(-1) = 6 and *PI*. *approx*(-5) = 101
 ...but also *THREE*. *approx*(-1) = 6.
- The precision-level *n* is used to *dynamically* specify the *granularity*!
- At level *n* the width of each representational interval is 2^n .



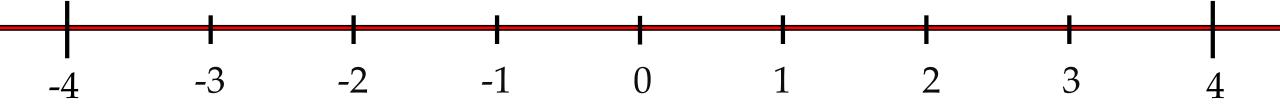
- **Boehm encodings:** Real numbers are represented as Java objects x of the class *CR*, which has the method *BigInteger approx(int n)* satisfying $|[x]| 2^n * x$. *approx(n)* $| \le 2^{n-1}$.
- For example, *PI*. approx(-1) = 6 and *PI*. approx(-5) = 101
 ...but also *THREE*. approx(-1) = 6.
- The precision-level *n* is used to *dynamically* specify the *granularity*!
- At level **0** the width of each representational interval is **1**.



- **Boehm encodings:** Real numbers are represented as Java objects x of the class *CR*, which has the method *BigInteger approx(int n)* satisfying $|\llbracket x \rrbracket 2^n * x.approx(n) | \le 2^{n-1}$.
- For example, *PI*. *approx*(-1) = 6 and *PI*. *approx*(-5) = 101
 ...but also *THREE*. *approx*(-1) = 6.
- The precision-level *n* is used to *dynamically* specify the *granularity*!
- At level **-1** the width of each representational interval is **0.5**.



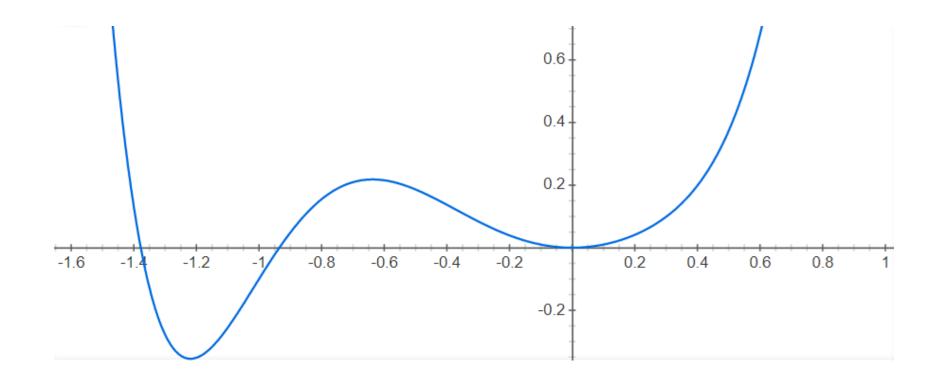
- **Boehm encodings:** Real numbers are represented as Java objects *x* of the class *CR*, which has the method *BigInteger approx(int n)* satisfying $|[x]| 2^n * x$. *approx(n)* $| \le 2^{n-1}$.
- For example, *PI*. approx(-1) = 6 and *PI*. approx(-5) = 101
 ...but also *THREE*. approx(-1) = 6.
- The precision-level *n* is used to *dynamically* specify the *granularity*!
- As the level decreases, the width converges to **0**.

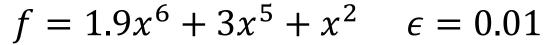


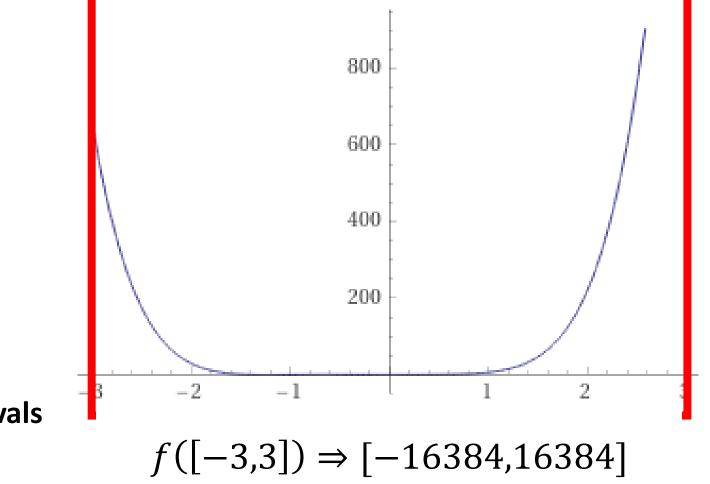
- **Boehm encodings:** Real numbers are represented as Java objects *x* of the class *CR*, which has the method *BigInteger approx(int n)* satisfying $|[x]| 2^n * x$. *approx(n)* $| \le 2^{n-1}$.
- For example, *PI*. *approx*(-1) = 6 and *PI*. *approx*(-5) = 101
 ...but also *THREE*. *approx*(-1) = 6.
- The precision-level *n* is used to *dynamically* specify the *granularity*!
- There are defined *continuous* functions for all operations one would expect for a mathematical calculator.
 - We can easily define *modulus of continuity* functions for each of these operations, also on Boehm encodings.

<i>y</i>	1	J		- 0'			5	
16:55						Θ¤	약 🚄 🗎 65%	
DEG							:	
96541266540853061434443185867697E-4187								
			_	-				
_	~	~		~	INV	RAD	%	
7	8	9		С			70	
					sin	cos	tan	
4	5	6						
					In	log	\checkmark	
1	2	3					^	
					π	е		
0					()		
						,		

Global Optimisation via Boehm Encodings $f = 1.9x^6 + 3x^5 + x^2$ $\epsilon = 0.01$

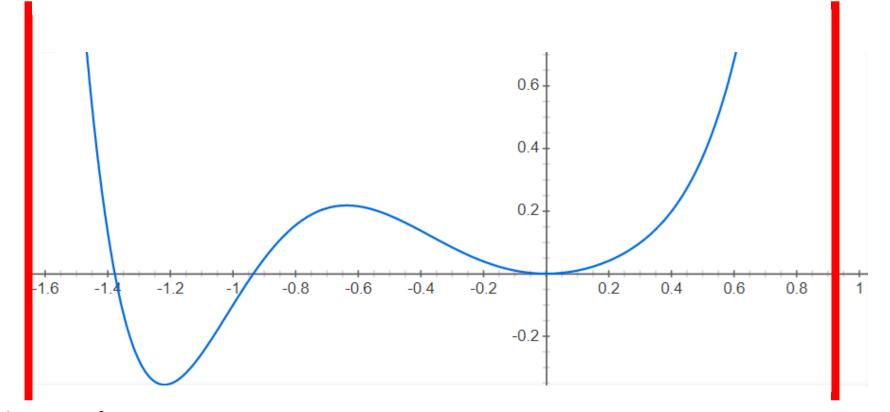






3 candidate intervals

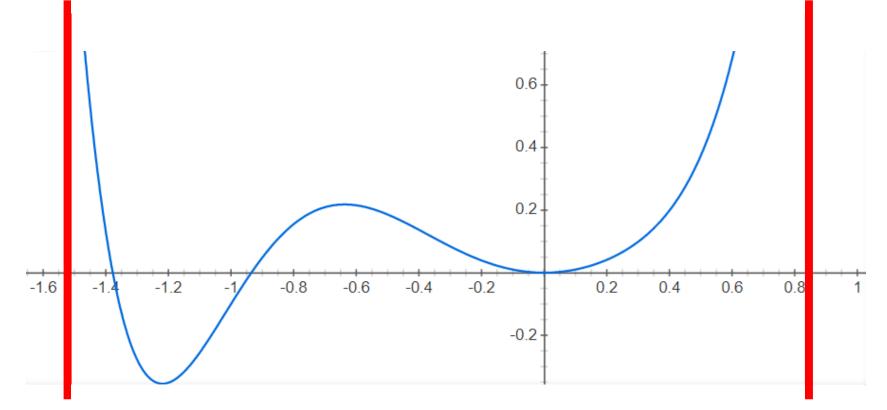
 $f = 1.9x^6 + 3x^5 + x^2 \quad \epsilon = 0.01$



38 candidate intervals

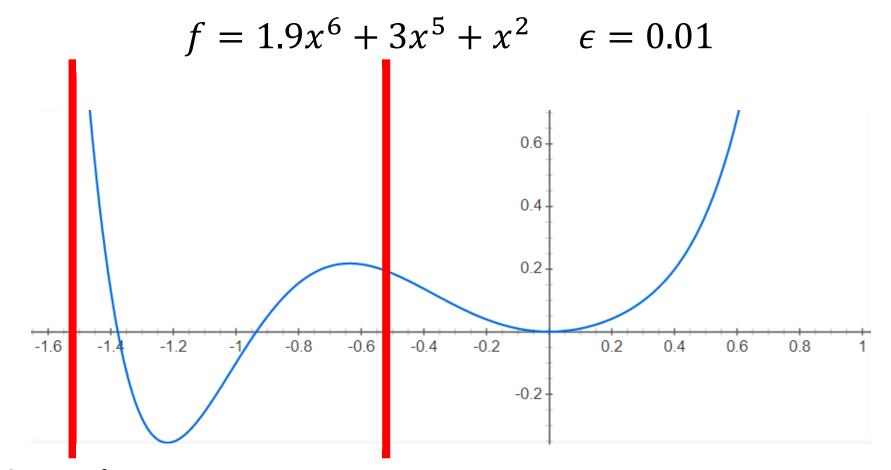
 $f([-1.6328125, 0.9375]) \Rightarrow [-4, 4]$

 $f = 1.9x^6 + 3x^5 + x^2 \quad \epsilon = 0.01$



51 candidate intervals

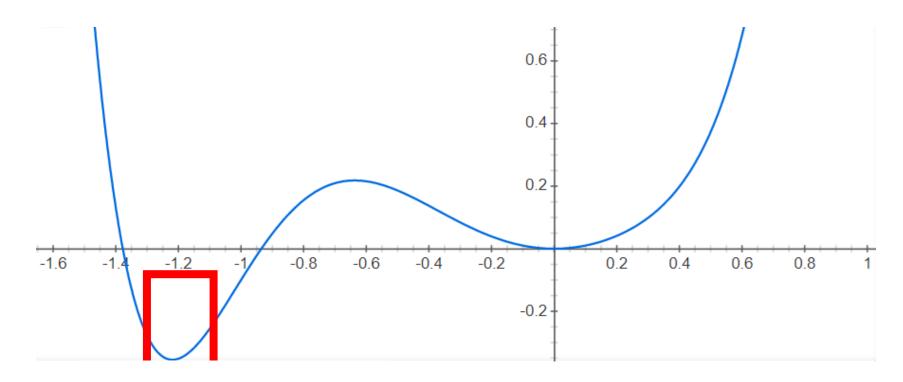
 $f([-1.55078125, 0.8125]) \Rightarrow [-2, 2]$



62 candidate intervals

 $f([-1.55078125, -0.5625]) \Rightarrow [-2, 2]$

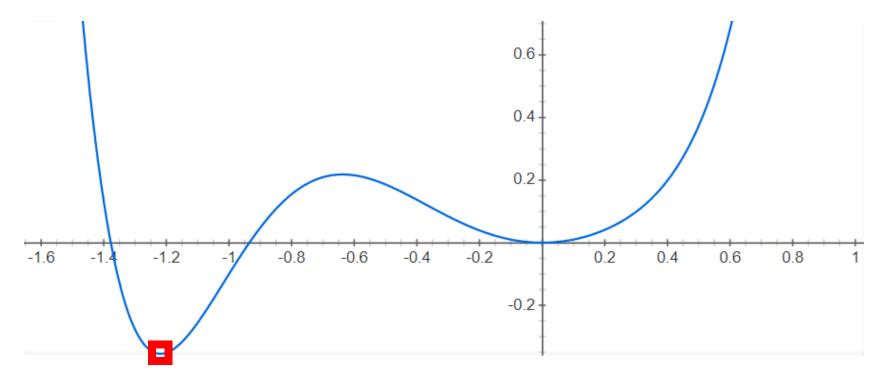
Global Optimisation via Boehm Encodings $f = 1.9x^6 + 3x^5 + x^2$ $\epsilon = 0.01$



24 candidate intervals

 $f([-1.30859375, -1.1015625]) \Rightarrow [-0.75, -0.125]$

Global Optimisation via Boehm Encodings $f = 1.9x^6 + 3x^5 + x^2$ $\epsilon = 0.01$



315 candidate intervals

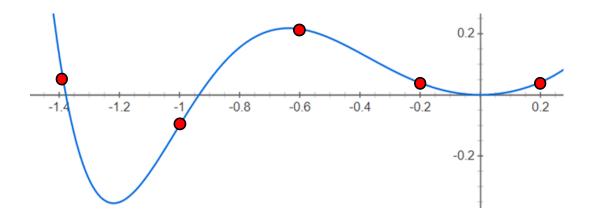
 $f([-1.23699951171875, -1.1998291015625]) \Rightarrow [-0.35546875, -0.34765625]$

M. Escardo, "Infinite sets that admit fast exhaustive search," in 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), July 2007, pp. 443–452.

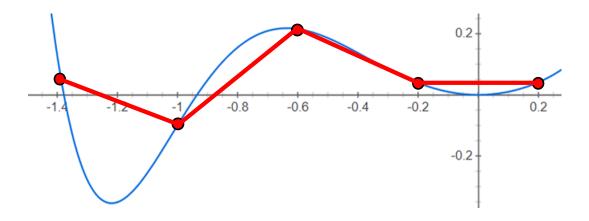
- A data type is called *searchable* if we can construct a *search algorithm* that, given a predicate, returns an element of that type that satisfies the predicate (if such an element exists).
- Every finite type is trivially searchable.
- Perhaps interestingly, some '*dynamic*' infinite types are searchable on certain '*continuous*' predicates.
 - Types such as the two we have shown for (compact intervals of) constructive real numbers!
- A predicate is *continuous* if it can be knowingly answered with a given limit on the *granularity* of these types.
 - This essentially allows the type to be searched as if it were finite!

- In function approximation, we wish to compute some **reconstructed function** $f: X \rightarrow Y$ via some *data observations* $(x_i, y_i): X \times Y$.
 - The data observations can be seen as coming from some **data oracle** $\Omega : X \to Y$ that may, or may not, be subject to *observation errors*.
- The goal in function approximation is to *minimise the loss*, measured by some **loss function** $L : (X \to Y) \to (X \to Y) \to R$, between the reconstructed function and the data oracle.
- A function approximation process is *convergent* if $\forall \epsilon : R.L(f, \Omega) < \epsilon$.

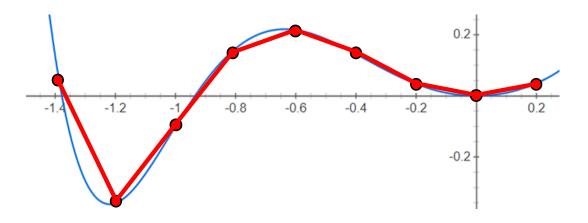
- Function approximation is convergent if, for any $\epsilon : R$, the constructed $f: X \to Y$ minimises the loss, i.e. $L(f, \Omega) < \epsilon$.
- Two function approximation processes: **interpolation** vs. **regression**.



- Function approximation is convergent if, for any $\epsilon : R$, the constructed $f: X \to Y$ minimises the loss, i.e. $L(f, \Omega) < \epsilon$.
- Two function approximation processes: **interpolation** vs. **regression**.



- Function approximation is convergent if, for any $\epsilon : R$, the constructed $f: X \to Y$ minimises the loss, i.e. $L(f, \Omega) < \epsilon$.
- Two function approximation processes: **interpolation** vs. **regression**.
 - Convergence properties of interpolation are well-studied.



- Function approximation is convergent if, for any $\epsilon : R$, the constructed $f: X \to Y$ minimises the loss, i.e. $L(f, \Omega) < \epsilon$.
- Two function approximation processes: **interpolation** vs. **regression**.
 - Convergence properties of interpolation are well-studied.
- Successful regression relies upon the choice of a particular model function $M: P \to (X \to Y)$. $\lambda a. b. c. \lambda x. ax^6 + bx^5 + cx^2 : R^3 \to (R \to R)$ $0x^6 + 0x^5 + 0x^2$

- Function approximation is convergent if, for any $\epsilon : R$, the constructed $f: X \to Y$ minimises the loss, i.e. $L(f, \Omega) < \epsilon$.
- Two function approximation processes: **interpolation** vs. **regression**.
 - Convergence properties of interpolation are well-studied.
- Successful regression relies upon the choice of a particular model function $M: P \to (X \to Y)$. $\lambda a. b. c. \lambda x. ax^{6} + bx^{5} + cx^{2} : R^{3} \to (R \to R)$ $2x^{6} + 2x^{5} + 1x^{2}$

- Function approximation is convergent if, for any $\epsilon : R$, the constructed $f: X \to Y$ minimises the loss, i.e. $L(f, \Omega) < \epsilon$.
- Two function approximation processes: **interpolation** vs. **regression**.

0.2

-0.2

02

-0.2

-0.4

- Convergence properties of interpolation are well-studied.
- Successful regression relies upon the choice of a particular model function $M: P \rightarrow (X \rightarrow Y)$.

 $\lambda a. b. c. \lambda x. ax^6 + bx^5 + cx^2 : R^3 \rightarrow (R \rightarrow R) \ 1.5x^6 + 2.5x^5 + 1x^2$

- Function approximation is convergent if, for any $\epsilon : R$, the constructed $f: X \to Y$ minimises the loss, i.e. $L(f, \Omega) < \epsilon$.
- Two function approximation processes: **interpolation** vs. **regression**.
 - Convergence properties of interpolation are well-studied.
- Successful regression relies upon the choice of a particular model function $M: P \to (X \to Y)$.

 $\lambda a.b.c.\lambda x.ax^6 + bx^5 + cx^2 : R^3 \rightarrow (R \rightarrow R) \ \textbf{1.9}x^6 + \textbf{3}x^5 + \textbf{1}x^2$

- Function approximation is convergent if, for any $\epsilon : R$, the constructed $f: X \to Y$ minimises the loss, i.e. $L(f, \Omega) < \epsilon$.
- Two function approximation processes: **interpolation** vs. **regression**.

0.2

02

-0.8

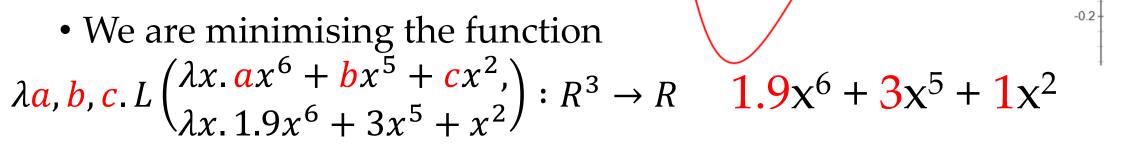
-0.6

-04

-0.2

-1.2

- Convergence properties of interpolation are well-studied.
- Successful regression relies upon the choice of a particular *model function* $M: P \rightarrow (X \rightarrow Y)$.



• Convergent regression is convergent global optimisation!

Conclusions and Future Work

- Huge investment in local optimisation algorithms via gradient descent
 - Fantastic, efficient algorithms; as well as dedicated hardware
- But sometimes finding the best solution to a problem is important
 - Further improvements to local optimisation will not take us to global
- We have introduced a different line of work: **convergent global optimisation via constructive real numbers**
 - Floating-point numbers are unsuitable
- This line of work has promise
 - The theoretical guarantees can be established mathematically and applied to foundational questions, such as convergent regression
- The algorithms require a lot of work but this work could be worthwhile