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In this talk I will…

• Introduce convergent global optimisation

• Discuss how floating-point real numbers are an inappropriate 
data type for convergent global optimisation

• Introduce two types for arbitrary-precision real numbers 

• Show how global optimisation converges on one of these types

• Apply this framework to machine learning to exhibit convergence 
properties for regression on arbitrary ‘searchable’ data types



Optimisation: Efficiency vs. Correctness

• Optimisation is a core component of supervised machine learning.

• It has broad applications to function approximation algorithms, 
such as interpolation and regression.

• Efficient local optimisation algorithms, e.g. gradient descent, have 
been studied extensively – and applied to deep learning!

• Convergent global optimisation algorithms, e.g. branch-and-bound, 
are much less practically available – but never yield an incorrect result!



















• Gradient descent: Local minima via derivative of function

• Branch-and-bound: Global minima via continuity of function



Convergence of Global Optimisation

• A function 𝑓 ∶ ℝ → ℝ is continuous if it comes equipped with a 
modulus of continuity function 𝑚 ∶ ℝ ×ℝ → ℝ such that,

𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑚 𝑥, 𝑥 − 𝑦 .



Convergence of Global Optimisation

• A function 𝑓 ∶ ℝ → ℝ is continuous if it comes equipped with a 
modulus of continuity function 𝑚 ∶ ℝ ×ℝ → ℝ such that,

𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑚 𝑥, 𝑥 − 𝑦 .

• A global optimisation algorithm is convergent if, for any 𝜖 ∶ ℝ, 
we can compute 𝑥0 ∶ℝ such that 𝑓 𝑥0 − 𝑓 𝑥 < 𝜖.

• A branch-and-bound algorithm converges if:
1. The function is continuous,
2. The branching procedure ensures 

the width of the widest box tends to 0,
3. The bounding procedure ensures that, 

as the width of a box decreases, so too does its height.

L. H. de Figueiredo, R. J. V. Iwaarden, and J. Stolfi. Fast interval branch-and-bound 
methods for unconstrained global optimization with affine arithmetic. 1997.



Global Optimisation using Floating-point Reals

• When computer scientists talk about “real numbers”, they 
often mean “floating-point numbers” – for obvious reasons!

• However, floats are an inappropriate data type for 
performing global optimisation…
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• These errors are, in practice, often unimportant – but sometimes they are crucial.

• Floating-point has a very high level of precision – but this granularity is fixed.

• Floating-point is a ‘discrete’ data type.

• This affects both continuity and convergence.

• Global optimisation convergence cannot be guaranteed.

• We thus require a ‘continuous’ data type for arbitrary-precision real numbers…

Global Optimisation using Floating-point Reals





What are Constructive Reals?

• Constructive reals are those real numbers 𝑥 ∶ 𝑅 that can be 
constructively located: either 𝑝 < 𝑥 or 𝑥 < 𝑞 for any 𝑝, 𝑞: 𝑄.

• Constructive reals are those real numbers 𝑥 ∶ 𝑅 that can be 
reconstructed by an algorithm to any degree of precision.
• A pair (𝑖, 𝑇) where 𝑖 = 𝑓𝑙𝑜𝑜𝑟(𝑥) and 𝑇:𝑁+ → {1…10}

where 𝑇(𝑛) is the 𝑛th decimal digit of 𝑥.

• A function 𝑓: 𝑍 → 𝑍 such that 𝑥 − 2𝑛 ∗ 𝑓 𝑛 ≤ 2𝑛−1. 

• Constructive reals are a data type where the granularity of the 
real line is dynamic – and converges to the real line itself.

A. B. Booij, “Analysis in univalent type theory,” Ph.D. 
dissertation, University of Birmingham, 2020. 



Implementations of Constructive Reals

• Signed-digit representation: Numbers in −𝑛, 𝑛 can be 
represented as infinitary sequences 𝛼 ∶ 𝑁 → {−𝑛,… , 𝑛} such that,

𝛼 :=  (𝑛=0)
∞ 𝛼𝑛

2𝑛+1
.

• For example, we represent [−1,1] by streams of type 𝑁 → {−1,0,1}.

-1 10

P. Di Gianantonio, “A functional approach to computability on real numbers,” 
European Association For Theoretical Computer Science, vol. 50, pp. 518–518, 1993. 
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00000…
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Implementations of Constructive Reals

• Signed-digit representation: Numbers in −𝑛, 𝑛 can be 
represented as infinitary sequences 𝛼 ∶ 𝑁 → {−𝑛,… , 𝑛} such that,

𝛼 :=  (𝑛=0)
∞ 𝛼𝑛

2𝑛+1
.

• For example, we represent [−1,1] by streams of type 𝑁 → {−1,0,1}.

-1 10-0.375

-101



Implementations of Constructive Reals

• Signed-digit representation: Numbers in −𝑛, 𝑛 can be 
represented as infinitary sequences 𝛼 ∶ 𝑁 → {−𝑛,… , 𝑛} such that,

𝛼 :=  (𝑛=0)
∞ 𝛼𝑛

2𝑛+1
.

• For example, we represent [−1,1] by streams of type 𝑁 → {−1,0,1}.

-1 10-0.4375

-101-1



Implementations of Constructive Reals

• Signed-digit representation: Numbers in −𝑛, 𝑛 can be 
represented as infinitary sequences 𝛼 ∶ 𝑁 → {−𝑛,… , 𝑛} such that,

𝛼 :=  (𝑛=0)
∞ 𝛼𝑛

2𝑛+1
.

• For example, we represent [−1,1] by streams of type 𝑁 → {−1,0,1}.

-1 10-0.4375

-101-10000000000000000000000000000000000000000000000
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• Truncation gives us dynamic granularity!

-1 10
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Implementations of Constructive Reals

• Signed-digit representation: Numbers in −𝑛, 𝑛 can be 
represented as infinitary sequences 𝛼 ∶ 𝑁 → {−𝑛,… , 𝑛} such that,

𝛼 :=  (𝑛=0)
∞ 𝛼𝑛

2𝑛+1
.

• For example, we represent [−1,1] by streams of type 𝑁 → {−1,0,1}.

• Truncation gives us dynamic granularity!

• There are defined continuous functions for negation, midpoint, 
infinitary midpoint, truncated addition and multiplication.

• The modulus of continuity for these functions tells us how many 
digits of input we require for each digit of output.

M. Escardo, “Real number computation in Haskell with real 
numbers ´ represented as infinite sequences of digits,” 2011. 



Implementations of Constructive Reals

• Boehm encodings: Real numbers are represented as Java objects 𝑥 of 
the class 𝐶𝑅, which has the method 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥(𝑖𝑛𝑡 𝑛)
satisfying 𝑥 − 2𝑛 ∗ 𝑥. 𝑎𝑝𝑝𝑟𝑜𝑥 𝑛 ≤ 2𝑛−1.

• For example, 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6 and 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −5 = 101
• …but also 𝑇𝐻𝑅𝐸𝐸. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6.

• The precision-level 𝑛 is used to dynamically specify the granularity!

• At level 𝑛 the width of each representational interval is 2𝑛.

-4 4-3            -2            -1             0             1              2             3

-4             -3            -2            -1            0             1              2             3             4

H.-J. Boehm, “Small-data computing: correct calculator arithmetic,” 
Communications of the ACM, vol. 60, no. 8, pp. 44–49, 2017. 



Implementations of Constructive Reals

• Boehm encodings: Real numbers are represented as Java objects 𝑥 of 
the class 𝐶𝑅, which has the method 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥(𝑖𝑛𝑡 𝑛)
satisfying 𝑥 − 2𝑛 ∗ 𝑥. 𝑎𝑝𝑝𝑟𝑜𝑥 𝑛 ≤ 2𝑛−1.

• For example, 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6 and 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −5 = 101
• …but also 𝑇𝐻𝑅𝐸𝐸. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6.

• The precision-level 𝑛 is used to dynamically specify the granularity!

• At level 0 the width of each representational interval is 1.
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Implementations of Constructive Reals

• Boehm encodings: Real numbers are represented as Java objects 𝑥 of 
the class 𝐶𝑅, which has the method 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥(𝑖𝑛𝑡 𝑛)
satisfying 𝑥 − 2𝑛 ∗ 𝑥. 𝑎𝑝𝑝𝑟𝑜𝑥 𝑛 ≤ 2𝑛−1.

• For example, 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6 and 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −5 = 101
• …but also 𝑇𝐻𝑅𝐸𝐸. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6.

• The precision-level 𝑛 is used to dynamically specify the granularity!

• At level −1 the width of each representational interval is 0.5.

-4 4-3            -2            -1             0             1              2             3
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Implementations of Constructive Reals

• Boehm encodings: Real numbers are represented as Java objects 𝑥 of 
the class 𝐶𝑅, which has the method 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥(𝑖𝑛𝑡 𝑛)
satisfying 𝑥 − 2𝑛 ∗ 𝑥. 𝑎𝑝𝑝𝑟𝑜𝑥 𝑛 ≤ 2𝑛−1.

• For example, 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6 and 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −5 = 101
• …but also 𝑇𝐻𝑅𝐸𝐸. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6.

• The precision-level 𝑛 is used to dynamically specify the granularity!

• As the level decreases, the width converges to 0.

-4 4-3            -2            -1             0             1              2             3



Implementations of Constructive Reals

• Boehm encodings: Real numbers are represented as Java objects 𝑥 of 
the class 𝐶𝑅, which has the method 𝐵𝑖𝑔𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥(𝑖𝑛𝑡 𝑛)
satisfying 𝑥 − 2𝑛 ∗ 𝑥. 𝑎𝑝𝑝𝑟𝑜𝑥 𝑛 ≤ 2𝑛−1.

• For example, 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6 and 𝑃𝐼. 𝑎𝑝𝑝𝑟𝑜𝑥 −5 = 101
• …but also 𝑇𝐻𝑅𝐸𝐸. 𝑎𝑝𝑝𝑟𝑜𝑥 −1 = 6.

• The precision-level 𝑛 is used to dynamically specify the granularity!

• There are defined continuous functions 
for all operations one would expect 
for a mathematical calculator. 
• We can easily define modulus of continuity

functions for each of these operations, 
also on Boehm encodings.



Global Optimisation via Boehm Encodings

𝑓 = 1.9𝑥6 + 3𝑥5 + 𝑥2 𝜖 = 0.01



Global Optimisation via Boehm Encodings

𝑓 = 1.9𝑥6 + 3𝑥5 + 𝑥2 𝜖 = 0.01

𝑓 −3,3 ⇒ [−16384,16384]
3 candidate intervals



Global Optimisation via Boehm Encodings

𝑓 = 1.9𝑥6 + 3𝑥5 + 𝑥2 𝜖 = 0.01

𝑓 −1.6328125,0.9375 ⇒ [−4,4]
38 candidate intervals



Global Optimisation via Boehm Encodings

𝑓 = 1.9𝑥6 + 3𝑥5 + 𝑥2 𝜖 = 0.01

𝑓 −1.55078125,0.8125 ⇒ [−2,2]
51 candidate intervals



Global Optimisation via Boehm Encodings

𝑓 = 1.9𝑥6 + 3𝑥5 + 𝑥2 𝜖 = 0.01

𝑓 −1.55078125,−0.5625 ⇒ [−2,2]
62 candidate intervals



Global Optimisation via Boehm Encodings

𝑓 = 1.9𝑥6 + 3𝑥5 + 𝑥2 𝜖 = 0.01

𝑓 −1.30859375,−1.1015625 ⇒ [−0.75,−0.125]
24 candidate intervals



Global Optimisation via Boehm Encodings

𝑓 = 1.9𝑥6 + 3𝑥5 + 𝑥2 𝜖 = 0.01

𝑓 −1.23699951171875,−1.1998291015625 ⇒ [−0.35546875, −0.34765625]
315 candidate intervals



Application to Foundations of Regression

• A data type is called searchable if we can construct a search algorithm
that, given a predicate, returns an element of that type that satisfies 
the predicate (if such an element exists).

• Every finite type is trivially searchable.

• Perhaps interestingly, some ‘dynamic’ infinite types are searchable 
on certain ‘continuous’ predicates. 
• Types such as the two we have shown for (compact intervals of) 

constructive real numbers!

• A predicate is continuous if it can be knowingly answered with a 
given limit on the granularity of these types.
• This essentially allows the type to be searched as if it were finite!

M. Escardo, “Infinite sets that admit fast exhaustive search,” in 22nd Annual IEEE 
Symposium on Logic in Computer Science (LICS 2007), July 2007, pp. 443–452.



Application to Foundations of Regression

• In function approximation, we wish to compute some reconstructed 
function 𝑓: 𝑋 → 𝑌 via some data observations 𝑥𝑖 , 𝑦𝑖 : 𝑋 × 𝑌.
• The data observations can be seen as coming from some data oracle Ω ∶ 𝑋 → 𝑌

that may, or may not, be subject to observation errors.

• The goal in function approximation is to minimise the loss, measured 
by some loss function 𝐿 ∶ 𝑋 → 𝑌 → 𝑋 → 𝑌 → 𝑅, between the 
reconstructed function and the data oracle.

• A function approximation process is convergent if ∀𝜖 ∶ 𝑅. 𝐿 𝑓, Ω < 𝜖.
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• Function approximation is convergent if, for any 𝜖 ∶ 𝑅, the 
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1.5x6 + 2.5x5 + 1x2𝜆𝑎. 𝑏. 𝑐. 𝜆𝑥. 𝑎𝑥6 + 𝑏𝑥5 + 𝑐𝑥2 ∶ 𝑅3 → (𝑅 → 𝑅)
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• Function approximation is convergent if, for any 𝜖 ∶ 𝑅, the 
constructed 𝑓: 𝑋 → 𝑌 minimises the loss, i.e. 𝐿 𝑓, Ω < 𝜖.

• Two function approximation processes: interpolation vs. regression.
• Convergence properties of interpolation are well-studied.

• Successful regression relies
upon the choice of a particular
model function 𝑀:𝑃 → (𝑋 → 𝑌).

1.9x6 + 3x5 + 1x2𝜆𝑎. 𝑏. 𝑐. 𝜆𝑥. 𝑎𝑥6 + 𝑏𝑥5 + 𝑐𝑥2 ∶ 𝑅3 → (𝑅 → 𝑅)



Application to Foundations of Regression

• Function approximation is convergent if, for any 𝜖 ∶ 𝑅, the 
constructed 𝑓: 𝑋 → 𝑌 minimises the loss, i.e. 𝐿 𝑓, Ω < 𝜖.

• Two function approximation processes: interpolation vs. regression.
• Convergence properties of interpolation are well-studied.

• Successful regression relies
upon the choice of a particular
model function 𝑀:𝑃 → (𝑋 → 𝑌).

• We are minimising the function

• Convergent regression is convergent global optimisation!

1.9x6 + 3x5 + 1x2𝜆𝑎, 𝑏, 𝑐. 𝐿
𝜆𝑥. 𝑎𝑥6 + 𝑏𝑥5 + 𝑐𝑥2,

𝜆𝑥. 1.9𝑥6 + 3𝑥5 + 𝑥2
∶ 𝑅3 → 𝑅



Conclusions and Future Work

• Huge investment in local optimisation algorithms via gradient descent

• Fantastic, efficient algorithms; as well as dedicated hardware

• But sometimes finding the best solution to a problem is important

• Further improvements to local optimisation will not take us to global

• We have introduced a different line of work: convergent global optimisation 
via constructive real numbers

• Floating-point numbers are unsuitable 

• This line of work has promise

• The theoretical guarantees can be established mathematically and applied 
to foundational questions, such as convergent regression

• The algorithms require a lot of work – but this work could be worthwhile


