Convergent
Global Optimisation via
Constructive Real Numbers

Todd Waugh Ambridge
(University of Birmingham)

11th March 2021

In this talk I will...

* Introduce convergent global optimisation

* Discuss how floating-point real numbers are an inappropriate
data type for convergent global optimisation

* Introduce two types for arbitrary-precision real numbers
* Show how global optimisation converges on one of these types

* Apply this framework to machine learning to exhibit convergence
properties for regression on arbitrary ‘searchable” data types

Optimisation: Efficiency vs. Correctness

* Optimisation is a core component of supervised machine learning.

* It has broad applications to function approximation algorithms,
such as interpolation and regression.

* Efficient local optimisation algorithms, e.g. gradient descent, have
been studied extensively —and applied to deep learning!

* Convergent global optimisation algorithms, e.g. branch-and-bound,
are much less practically available — but never yield an incorrect result!

024

 Gradient descent: Local minima via derivative of function
* Branch-and-bound: Global minima via continuity of function

024+

Convergence of Global Optimisation

* A function f : R - R is continuous if it comes equipped with a
modulus of continuity function m : R X R - R such that,
m(x,).

L. H. de Figueiredo, R. J. V. Iwaarden, and J. Stolfi. Fast interval branch-and-bound
methods for unconstrained global optimization with affine arithmetic. 1997.

Convergence of Global Optimisation

* A function f : R - R is continuous if it comes equipped with a
modulus of continuity function m : R X R - R such that,

L f(x0) = () | < mlx,).

* A global optimisation algorithm is convergent if, for any € : R,
we can compute x; : R such that | f(x) — f(x) | <e.

* A branch-and-bound algorithm converges if:
1. The function is continuous, I

2. The branching procedure ensures
the of the widest box tends to O,

3. The bounding procedure ensures that,
as the of a box decreases, so too does its height.

Global Optimisation using Floating-point Reals

* When computer scientists talk about “real numbers”, they
often mean “floating-point numbers” — for obvious reasons!

* However, floats are an inappropriate data type for
performing global optimisation...

int main()
{
tloat x = ©.0;
float y = 0.6,
for (Int 1 =©8; 1 < 10; 1++) {

X 4= 0.1; 1

for (int j = @; j < 10; j++) {
S B, 999999
}

std::cout << x << std::endl;
std::cout << y << std::endl;

EXPLOITING VERIFIED NEURAL NETWORKS VIA FLOATING
POINT NUMERICAL ERROR

TECHNICAL REPORT

Kai Jia Martin Rinard
MIT CSAIL MIT CSAIL
jiakai@mit.edu rinard@csail.mit.edu
airplane horse horse horse horse horse

Lcw=0.53 Lcw=1.79e-06 Lcw=3.46e-06 Lcw=1.55e-06 Lcw=3.46e-06 Lcw=6.99e-04

o

deer deer deer deer deer
Lcw=1.19e-06 Lcw=1.55e-06 Lcw=1.19e-07 Lcw=1.19e-07 Lcw=2.40e-04

Figure 3: Adversarial Images Found by Our Method

2 turns

64m

3 turns

5 turns

8 turns

60 turns

158 turns

Is 158 a good
simulation of
infinity?

Global Optimisation using Floating-point Reals

* These errors are, in practice, often unimportant — but sometimes they are crucial.

* Floating-point has a very high level of precision — but this granularity is fixed.
* Floating-point is a ‘discrete” data type.
* This affects both continuity and convergence.

* Global optimisation convergence cannot be guaranteed.

* We thus require a “continuous” data type for arbitrary-precision real numbers...

-1 0 n 2n 4n

A. B. Booij, “Analysis in univalent type theory,” Ph.D.
dissertation, University of Birmingham, 2020.

What are Constructive Reals?

 Constructive reals are those real numbers x : R that can be
constructively located: either p < x or x < q for any p, q: Q.

* Constructive reals are those real numbers x : R that can be
reconstructed by an algorithm to any degree of precision.
* Apair (i,T) where i = floor(x) and T:N* - {1...10}
where T(n) is the nth decimal digit of x.
» Afunction f:Z » Z such that | x — 2" = f(n) | < 2" L.

* Constructive reals are a data type where the granularity of the
real line is dynamic — and converges to the real line itself.

P. Di Gianantonio, “A functional approach to computability on real numbers,”
European Association For Theoretical Computer Science, vol. 50, pp. 518-518, 1993.

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

[a] :

* For example, we represent

_an

- Z(TL O) 2n+1

—1,1] by streams of type N - {—1,0,1}.

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(TL O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

1-1-1-1-1...

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(TL O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

11111...

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(n 0) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

-11111...
1-1-1-1-1...
00000...

-1 0

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(TL O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(TL O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(TL O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

-10

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(n O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

-101

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(n O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

-101-1

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(n 0) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

-101-1000

o+

1 -0.4375 0 1

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(TL O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

* Truncation gives us dynamic granularity!

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(n O) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

* Truncation gives us dynamic granularity!

)
/ \

))

|

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(n 0) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

* Truncation gives us dynamic granularity!

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(n 0) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

* Truncation gives us dynamic granularity!

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_an
[[a:[_Z(n 0) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

* Truncation gives us dynamic granularity!

M. Escardo, “Real number computation in Haskell with real
numbers “ represented as infinite sequences of digits,” 2011.

Implementations of Constructive Reals

» Signed-digit representation: Numbers in [—n, n] can be
represented as infinitary sequences a : N = {—n, ..., n} such that,

_On
[[a:[- Z(Tl 0) on+1’
* For example, we represent [—1,1] by streams of type N — {—1,0,1}.

* Truncation gives us dynamic granularity!

* There are defined continuous tfunctions for negation, midpoint,
infinitary midpoint, truncated addition and multiplication.

* The modulus of continuity for these functions tells us how many
digits of input we require for each digit of output.

H.-J. Boehm, “Small-data computing: correct calculator arithmetic,”
Communications of the ACM, vol. 60, no. 8, pp. 44-49, 2017.

Implementations of Constructive Reals

* Boehm encodings: Real numbers are represented as Java objects x of
the class CR, which has the method Biginteger approx(int n)
satisfying |[x] — 2™ * x. approx(n) | < 271,

* For example, PI.approx(—1) = 6 and PI.approx(—5) = 101
* ...but also THREE.approx(—1) = 6.

* The precision-level n is used to dynamically specity the granularity!
* At level n the width of each representational interval is 2".

-4 -3 -2 -1 0 1 2 3 4

Implementations of Constructive Reals

* Boehm encodings: Real numbers are represented as Java objects x of
the class CR, which has the method Biginteger approx(int n)
satisfying |[x] — 2™ * x. approx(n) | < 271,

* For example, PI.approx(—1) = 6 and PI.approx(—5) = 101
* ...but also THREE.approx(—1) = 6.

* The precision-level n is used to dynamically specity the granularity!
* At level 0 the width of each representational interval is 1.

-4 -3 -2 -1 0 1 2 3 4

-8

Implementations of Constructive Reals

* Boehm encodings: Real numbers are represented as Java objects x of
the class CR, which has the method Biginteger approx(int n)
satisfying |[x] — 2™ * x. approx(n) | < 271,

* For example, PI.approx(—1) = 6 and PI.approx(—5) = 101
* ...but also THREE.approx(—1) = 6.

* The precision-level n is used to dynamically specity the granularity!
* At level —1 the width of each representational interval is 0.5.

-7 6 5> 4 3 -2 -1 0 1 2 3 4 5 6 7 8

Implementations of Constructive Reals

* Boehm encodings: Real numbers are represented as Java objects x of
the class CR, which has the method Biginteger approx(int n)
satisfying |[x] — 2™ * x. approx(n) | < 271,

* For example, PI.approx(—1) = 6 and PI.approx(—5) = 101
* ...but also THREE.approx(—1) = 6.

* The precision-level n is used to dynamically specity the granularity!
* As the level decreases, the width converges to 0.

Implementations of Constructive Reals

* Boehm encodings: Real numbers are represented as Java objects x of
the class CR, which has the method Biginteger approx(int n)
satisfying |[x] — 2™ * x. approx(n) | < 271,

* For example, PI.approx(—1) = 6 and PI.approx(—5) = 101
e ...but also THREE.approx(—1) = 6.

* The precision-level n is used to dynamically specity the granularity!

@ N V.4 W65%

* qure are def.lned Contlnuous funCtlonS b ..96541266540853061434443185867697E-4187 |
for all operations one would expect
for a mathematical calculator.

* We can easily define modulus of continuity
functions for each of these operations,
also on Boehm encodings.

Global Optimisation via Boehm Encodings

f=19x°%+3x>+x% €=0.01

064
041
/\02“

16 1. 12 1 08 06 -04 -02 0.2 0.4 0.6 0.8 1
024

Global Optimisation via Boehm Encodings

f=19x%+3x>+x%> €=0.01

i-:||||: ,
|1'||||:
-l||||: ,u"

200 |

; 2 '_ ! :

3 candidate intervals

f([-3,3]) = [-16384,16384]

Global Optimisation via Boehm Encodings

f=19x%+3x>+x%> €=0.01

06+

04+

/\Dz |

16 1. 12 1 08 06 -04 -02 0.2 0.4 0.6 0.8 1

02+

38 candidate intervals

£([-1.6328125,0.9375]) = [—4,4]

Global Optimisation via Boehm Encodings

f=19x%+3x>+x%> €=0.01

06+

04+

/\Dz |

16l 1. 12 1 08 06 -04 -02 0.2 0.4 0.6 0. 1

02+

51 candidate intervals

f([-1.55078125,0.8125]) = [-2,2]

Global Optimisation via Boehm Encodings

f=19x%+3x>+x%> €=0.01

06+
04+

0.2+

04 -02 0.2 0.4 0.6 0.8 1

02+

62 candidate intervals

f([-1.55078125,-0.5625]) = [—2,2]

Global Optimisation via Boehm Encodings

f=19x%+3x>+x%> €=0.01

06+

04+

/\Dz |

16 1. 12 1 08 06 -04 -02 0.2 0.4 0.6 0.8 1

02+

24 candidate intervals

£ ([-1.30859375,-1.1015625]) = [—0.75, —0.125]

Global Optimisation via Boehm Encodings

f=19x%+3x>+x%> €=0.01

06+

04+

/\Dz |

16 1. 12 1 08 06 -04 -02 0.2 0.4 0.6 0.8 1

02+

315 candidate intervals

£ ([~1.23699951171875,~1.1998291015625]) = [—0.35546875, —0.34765625]

M. Escardo, “Infinite sets that admit fast exhaustive search,” in 22nd Annual IEEE
Symposium on Logic in Computer Science (LICS 2007), July 2007, pp. 443-452.

Application to Foundations of Regression

* A data type is called searchable if we can construct a search algorithm
that, given a predicate, returns an element of that type that satisfies
the predicate (if such an element exists).

* Every finite type is trivially searchable.

* Perhaps interestingly, some ‘dynamic” infinite types are searchable
on certain ‘continuous’ predicates.
* Types such as the two we have shown for (compact intervals of)
constructive real numbers!

* A predicate is continuous if it can be knowingly answered with a
given limit on the granularity of these types.

* This essentially allows the type to be searched as if it were finite!

Application to Foundations of Regression

* In function approximation, we wish to compute some reconstructed
function f: X — Y via some data observations (x;,y;): X X Y.

* The data observations can be seen as coming from some data oracle O : X - Y
that may, or may not, be subject to observation errors.

* The goal in function approximation is to minimise the loss, measured
by some loss function L : (X - Y) - (X = Y) = R, between the
reconstructed function and the data oracle.

* A function approximation process is convergent if Ve : R.L(f,Q) < €.

Application to Foundations of Regression

* Function approximation is convergent if, for any € : R, the
constructed f: X — Y minimises the loss, i.e. L(f,Q) < €.

* Two function approximation processes: interpolation vs. regression.

1 12 1 0.8 0.6 0.4 02 0.2
.D 2 <+

Application to Foundations of Regression

* Function approximation is convergent if, for any € : R, the
constructed f: X — Y minimises the loss, i.e. L(f,Q) < €.

* Two function approximation processes: interpolation vs. regression.

Application to Foundations of Regression

* Function approximation is convergent if, for any € : R, the
constructed f: X — Y minimises the loss, i.e. L(f,Q) < €.

* Two function approximation processes: interpolation vs. regression.
» Convergence properties of interpolation are well-studied.

Application to Foundations of Regression

* Function approximation is convergent if, for any € : R, the
constructed f: X — Y minimises the loss, i.e. L(f,Q) < €.

* Two function approximation processes: interpolation vs. regression.
» Convergence properties of interpolation are well-studied.

* Successful regression relies \ o2l
upon the choice of a particular \ /\ .
model function M:P - (X > Y). 7 CE R T o

024

Aa.b.c.Ax.ax® + bx5 + cx2 : R3 > (R > R) 0x°®+ 0x° + 0x?

Application to Foundations of Regression

* Function approximation is convergent if, for any € : R, the
constructed f: X — Y minimises the loss, i.e. L(f,Q) < €.

* Two function approximation processes: interpolation vs. regression.
» Convergence properties of interpolation are well-studied.

* Successtul regression relies
upon the choice of a particular \ -
model function M:P - (X - Y). T 9/ es es oa o

02+

Aa.b.c.dx.ax® + bx® +cx?2:R3 > (R>R) 2X°+ 2x° + 1x?

Application to Foundations of Regression

* Function approximation is convergent if, for any € : R, the
constructed f: X — Y minimises the loss, i.e. L(f,Q) < €.

* Two function approximation processes: interpolation vs. regression.
» Convergence properties of interpolation are well-studied.

* Successful regression relies \\ A
upon the choice of a particular \ R
model function M:P - (X - Y). U720 02

024

Aa.b.c. Ax.ax® + bx® +cx?:R3 - (R - R) 1.5x6 + 2.5x° + 1x?

Application to Foundations of Regression

* Function approximation is convergent if, for any € : R, the
constructed f: X — Y minimises the loss, i.e. L(f,Q) < €.

* Two function approximation processes: interpolation vs. regression.
» Convergence properties of interpolation are well-studied.

* Successtul regression relies
upon the choice of a particular \ /\ -
model function M:P — (X - Y). SN or o/ ws we @i -

-0.2

Aa.b.c.Ax.ax® + bx> +cx? : R3> > (R > R) 1.9x6 + 3x° + 1x?

Application to Foundations of Regression

* Function approximation is convergent if, for any € : R, the
constructed f: X — Y minimises the loss, i.e. L(f,Q) < €.

* Two function approximation processes: interpolation vs. regression.
» Convergence properties of interpolation are well-studied.

* Successtul regression relies
upon the choice of a particular \ /\ -
model function M:P — (X - Y). SN or o/ ws we @i -

-0.2

* We are minimising the function

6 5 2
da,be L (B HDCA OO R SR 19X6 + 35 + 12
Ax.1.9x° + 3x° + x

* Convergent regression is convergent global optimisation!

Conclusions and Future Work

* Huge investment in local optimisation algorithms via gradient descent
* Fantastic, efficient algorithms; as well as dedicated hardware

* But sometimes finding the best solution to a problem is important
 Further improvements to local optimisation will not take us to global
* We have introduced a different line of work: convergent global optimisation
via constructive real numbers
* Floating-point numbers are unsuitable

* This line of work has promise

 The theoretical guarantees can be established mathematically and applied
to foundational questions, such as convergent regression

* The algorithms require a lot of work — but this work could be worthwhile

