Reciprocals

Theorem Let $(a_n) \rightarrow a$ and suppose that $a \neq 0$ and $a_n \neq 0$ for all $n \in \mathbb{N}$. Then

$$\left(\frac{1}{a_n}\right) \to \frac{1}{a}$$

Proof

- $\text{(L1)} \quad \text{Since } (a_n) \rightarrow a \text{ there exists } N_1 \text{ such that } |a_n-a| < \frac{|a|}{2} \text{ for all } n > N_1.$
- (L2) Then, for $n > N_1$ we have $|a_n| > \frac{|a|}{2}$.
- (L3) Now let $\varepsilon > 0$ be given.

(L4) Let N₂ be such that
$$|a_n - a| < \frac{\epsilon |a|^2}{2}$$
 for all $n > N_2$.

(L5) Let $N = max\{N_1, N_2\}$.

(L6) Then for
$$n > N$$
 we have $\left| \frac{1}{a_n} - \frac{1}{a} \right| = \frac{|a_n - a|}{|a_n||a|}$

(L7)
$$< \frac{|a_n - a|}{|a|^2/2}$$

$$(L8) \qquad \qquad < \frac{\varepsilon |\alpha|^2/2}{|\alpha|^2/2}$$

 $(L9) = \varepsilon.$

(L10) Thus
$$\left(\frac{1}{a_n}\right) \rightarrow \frac{1}{a}$$
 as claimed.

- 1. Which statement best expresses the meaning of Line 2?
 - (a) Beyond a certain term in the sequence, every term has absolute value greater than a certain constant.
 - (b) There exist infinitely many terms in the sequence which have absolute value greater than a certain constant.
 - (c) The absolute value of the terms in the sequence is always greater than one half the absolute value of the limit.

- 2. Which of the following statements is closest in meaning to Line 3?
 - (a) Since $(a_n) \rightarrow a$ from the statement of the theorem, the definition of convergence gives a positive number ε which we now consider.
 - (b) Now we shall assume that we are given ε which may be any positive number.
 - (c) Now we are introducing a new variable ε, the value of which is positive and which will be determined in later calculations.

- 3. Would the proof still be correct if in Line 5 we replaced " $N = max\{N_1, N_2\}$ " with " $N = N_1 + N_2$ "?
 - (a) No because it does not make sense to add N_1 and N_2 .
 - (b) No because $N_1 + N_2$ is larger than max{ N_1, N_2 }.
 - (c) Yes because it would still be the case that n > N implies $n > N_1$ and $n > N_2$.
- 4. Where does the expression $\frac{\epsilon |a|^2}{2}$ on the right-hand side of the inequality in Line 4 come from?
 - (a) It comes from the inequality in Line 1, observing that $|a|^2 \ge |a|$ and ε is arbitrary.
 - (b) It has been chosen so that the calculations in Lines 6–9 work.
 - (c) It has been chosen so that ε cannot be too close to zero for the given value of N₂.
- 5. Where is the result in Line 2 used later in the proof?
 - (a) It is needed so that we know ε in line 3 can be chosen to be positive.
 - (b) It is needed to deduce Line 7 from Line 6.
 - (c) It is needed to deduce Line 8 from Line 7.
- 6. How do we know in Line 1 that such an N_1 exists?
 - (a) Because the value of ε in Line 3 has not yet been fixed.
 - (b) Because $(a_n) \rightarrow a$, the terms of the sequence must eventually be within |a|/2 of a.
 - (c) Because it is the start of the proof we can assume anything we need.
- 7. Which of the following best captures the content of the proof?
 - (a) Given positive ε , there is a term in the sequence beyond which $1/a_n$ is always within distance ε of 1/a.
 - (b) There is a number N such that when n > N we have $\left| \frac{1}{a_n} \frac{1}{a} \right| < \varepsilon$ for all $\varepsilon > 0$.
 - (c) We can find a natural number N and $\varepsilon > 0$ such that when n > N we have $\left| \frac{1}{\alpha_n} \frac{1}{\alpha} \right| < \varepsilon$.

- 8. How do you expect the values needed for N_1, N_2 would normally change as ε becomes smaller?
 - (a) Both N_1 and N_2 will become larger.
 - (b) N_1 will become larger but N_2 can stay the same.
 - (c) N_2 will become larger but N_1 can stay the same.
- 9. Suppose that $b \neq 0$ and $b_n \neq 0$ for all n and that $(1/b_n) \rightarrow 1/b$. Can we use the Theorem to deduce that $(b_n) \rightarrow b$?
 - (a) No the theorem only tells us that if $(b_n) \rightarrow b$ then $(1/b_n) \rightarrow 1/b$. (It is not an "if and only if" theorem.)
 - (b) Yes, apply the theorem with $a_n = 1/b_n$ and a = 1/b.
 - (c) No, because the algebra in the proof between Line 6 and Line 8 will not work in this case.
- 10. The picture shows the first 45 terms of a possible sequence (a_n) converging to a = 1.

Which labeling of the points A,B,C marked on the axes would illustrate the proof?

- (a) A is $1 + \varepsilon$, B is N₁ and C is N₂.
- (b) A is $1 + \varepsilon/2$, B is N₂ and C is N₁.
- (c) A is $1 + \varepsilon/2$, B is N₁ and C is N₂.