Nested intervals

Theorem Let $I_k = [a_k, b_k]$ for $k \in \mathbb{N}$ be a collection of closed intervals with $I_{k+1} \subseteq I_k$ for all $k \in \mathbb{N}$. Then the intersection $X = \bigcap_{k=1}^{\infty} I_k$ is non-empty.

If also the width of the intervals I_k tends to zero as $k \to \infty$ then X is a single point.

Proof

- (L1) Observe that for all k and l we have $a_k \leq b_1$ because if there were k and l such that $a_k > b_1$ then we would not have one of I_k and I_1 contained in the other.
- (L2) The sequence (a_k) is non-decreasing and is bounded above by b_1 and so $(a_k) \to a$ for some a.
- **(L3)** For fixed l, we have $a_k \leq b_1$ for all k
- **(L4)** and so the limit a must satisfy $a \leq b_1$.
- (L5) Since also $a \ge a_1$ for all l we have that a is in all of the intervals I_l .
- (L6) Hence $a \in X$, so X is non-empty.
- (L7) Suppose now that also the width of the intervals I_k tends to zero and let $c \in X$.
- **(L8)** If $c \neq a$, then for k sufficiently large we have $b_k a_k < |c a|$.
- (L9) But for such k we could not have both c and a in I_k , which contradicts the fact that both $a \in X$ and $c \in X$.
- (L10) Hence c = a and the intersection is a single point.
- 1. In the situation of the theorem, how are I_{10} and I_{20} related?
 - (a) We know only that the intersection of I_{10} and I_{20} is non-empty.
 - (b) It must be the case that I_{20} is a subset of I_{10} .
 - (c) It must be the case that I_{10} is a subset of I_{20} .
- 2. The statement $x \in \bigcap_{k=1}^{\infty} I_k$ means which of the following?
 - (a) That x is in I_k for all sufficiently large k.
 - (b) That x is in all of the sets I_1, I_2, I_3, \ldots
 - (c) There exists a number N such that $x \in I_1 \cap I_2 \cap \cdots \cap I_N$.

- 3. In Line 7, why do we introduce an element named c when we know c = a?
 - (a) We want to show that a is the only element of X and so we consider a possibly different element c of X and prove that c = a.
 - (b) Because if (a_k) does not converge, it may be that a is not in X.
 - (c) Because we are now making an extra assumption on the intervals I_k, that their width tends to zero.
- 4. How do we know in Line 5 that $a \ge a_1$ for all l?
 - (a) By the squeeze theorem, because the width of the intervals I_k tends to zero.
 - (b) Because a is in all of the intervals I_k .
 - (c) Because (a_k) is a non-decreasing sequence and a is its limit.

- 5. In the deduction in Line 1, how do we know that if $a_k > b_1$ we could not have one of I_k and I_1 contained in the other?
 - (a) Because the sequence (a_k) is non-decreasing and the sequence (b_k) is non-increasing.
 - (b) Because a_k > b_l would mean that the left-hand end of I_k was greater than the right-hand end of I_l.
 - (c) Because if $a_k \leq b_1$ then there would be a point x such that $a_k \leq x \leq b_1$ that is in both the intervals.
- 6. Which of the following best summarises the argument in lines 2–6?
 - (a) We deduce that a_k ≤ b_l for all k, l and so conclude that a point that is in all the intervals I_k must be the limit of the sequence (a_k).
 - (b) We assume that we have a point a that is in all the intervals I_k and deduce that a ≥ a_k for all k and so it is the limit of the sequence (a_k).
 - (c) We consider the sequence whose terms are the left-hand ends of the intervals I_k and show that this sequence converges and that its limit is in all the intervals.
- 7. The condition that the widths of the intervals tends to zero as k tends to infinity is being assumed in which parts of the proof?
 - (a) Line 7 only.
 - (b) Lines 7-10 only.
 - (c) The whole proof except for Line 1.

8. Could an argument very similar to Lines 7–10 of the proof be used to establish the following claim?

Claim: Let $I_k = (a_k, b_k)$ for $k \in \mathbb{N}$ be a collection of open intervals such that the width of the intervals I_k tends to zero as $k \to \infty$. If the intersection $\bigcap_{k=1}^{\infty} I_k$ is nonempty then it consists of a single point.

- (a) Yes: let a and c be in the intersection and proceed as in lines 7–10.
- (b) No: we need that the intervals satisfy I_{k+1} ⊆ I_k so that the "sufficiently large" k in Line 8 is certain to exist.
- (c) No: we need that the intervals I_k are closed otherwise we may have $a \notin I_k$ for some k.
- 9. Could the proof be made to work instead by considering the sequence (b_k) and showing that its limit b is in the intersection X?
 - (a) No, because we have proved that it is the limit a of the sequence (a_k) which is in X and it may be that $a \neq b$.
 - (b) No, because then we would need to have $I_k \subseteq I_{k+1}$ instead of $I_{k+1} \subseteq I_k$.
 - (c) Yes, (b_k) is non-increasing and bounded below and so has a limit b that we could prove to be in X in an analogous way.
- 10. Suppose the intervals I_k in the theorem are given by

$$I_k = \left[\frac{k-1}{2k}, \frac{k+1}{k}\right]$$

Then according to the method of the proof we have

(a) a = 1/2
(b) a = 3/4
(c) a = 1