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Segregation of Fe-rich liquids and formation of metallic cores was a key
differentiation process in rocky bodies in the early solar system. Mechanisms for
segregation in planetesimals (100-1000km bodies), and the proportion of these
bodies which differentiated, remain unclear. Here we explore the important role
of immiscibility of S-rich and S-poor liquids in core formation models.

-The dominant process of core formation was probably segregation of Fe-rich liquid from a crystal-rich magma ocean (left).

-In S- and P-rich systems! and at C saturation®® immiscibility results in separation of S-rich and S-poor core-forming liquids.

-Various 'low-temperature' models of core-formation have also been proposed (below right) which typically involve
percolation of FeS-rich liquids through crystalline silicate, either before or just after the onset of low-degree silicate melting.

-Mechanisms and conditions of segregation will have strong influence on core composition; e.g. early-formed (low T)
metallic liquids are assumed to be S-rich (near eutectic in the Fe-FeS system), with a decrease in S content at higher T.
However, immiscibility can also result in segregation of S-rich liquids.

Low-temperature core-formation InCreasing temperature

models:

1. Percolation of S-rich liquids, aided
by deformation, porosity etc.

2. Low-degree silicate melting
increases metallic melt fraction and
aids phase segregation.
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L 20 R e (1) as expected, initial liquids are S-rich, with a large T range over which metallic components melt
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Temperature (°C) before the onset of silicate melting (left, top). However,
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e %, (2) FeS-rich liquids have S contents exceeding Fe-FeS eutectic compositions, with little change in
O composition with increasing T, and
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2 XD (3) There is immiscibility/separation of Fe-rich (S-poor, P-rich, C-rich, O-poor, Si-bearing) and FeS-rich
O (P-poor, C-poor, O-bearing) solids/liquids (left, bottom) over a wide P-T-fO, range.
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-Our new superliquidus experiments (0.5 GPa/1673K) in the system Fe-Ni-P-S-O-C
constrain the role of C in driving immiscibility (right). Bulk C contents resulting in
immiscibility mirror trends in C solubility in Fe-rich liquids®, although immiscibility
occurs at C contents considerably below saturation.
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,o Modelled parent bodies for magmatic iron
h O meteorites (after Hilton et al. (2022)5...i.e.

'‘degassed’' planetesimal cores.

-Differentiation of planetesimals with chondritic compositions
(assuming no degassing/loss of C, P, S) results in core immiscibility.

-In contrast, parent bodies to magmatic iron meteorites were single
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liquids due to substantial degassing’ and low C, P, S contents. s
-Bulk composition, size and growth rate, and degree of degassing, o - b
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controlled the extent of immiscibility in planetesimal cores.
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