

A Mathematical Challenge: Bookings and Technical Capacities in the European Entry-Exit Gas Market

Johannes Thürauf

Discrete Optimization, FAU Erlangen-Nürnberg

Energy Seminar Edinburgh, May 7 2020

Perfect Competition

Multilevel Entry-Exit Gas Market Model

A four level model for the European Entry-Exit Gas Market¹:

Perfect Competition

Multilevel Entry-Exit Gas Market Model

A four level model for the European Entry-Exit Gas Market¹:

Maximize social welfare

Perfect Competition

Multilevel Entry-Exit Gas Market Model

A four level model for the European Entry-Exit Gas Market¹:

Maximize social welfare

Level 1: Allocation of technical capacities and booking price floors by the TSO

Perfect Competition

Multilevel Entry-Exit Gas Market Model

A four level model for the European Entry-Exit Gas Market¹:

Maximize social welfare

Level 1: Allocation of technical capacities and booking price floors by the TSO

Level 2: Booking of gas traders

Perfect Competition

Multilevel Entry-Exit Gas Market Model

A four level model for the European Entry-Exit Gas Market¹:

Maximize social welfare

Level 1: Allocation of technical capacities and booking price floors by the TSO

Level 2: Booking of gas traders

Level 3: Nominations of gas traders

Perfect Competition

Multilevel Entry-Exit Gas Market Model

A four level model for the European Entry-Exit Gas Market¹:

Maximize social welfare

Level 1: Allocation of technical capacities and booking price floors by the TSO

Level 2: Booking of gas traders

Level 3: Nominations of gas traders

Level 4: Cost-optimal transport through the network by the TSO



Figure: A Multi-level Gas Market Model¹

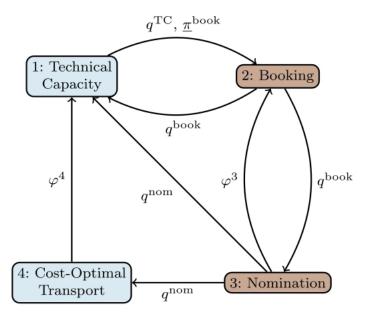


Figure: A Multi-level Gas Market Model¹

Main Goal: Decouple trading and transport using technical capacities

Structure of Bilevel Model

Upper Level (TSO):

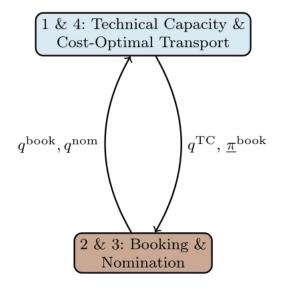


Figure: Bilevel Reformulation¹

Structure of Bilevel Model

Upper Level (TSO):

 nonlinear constraints depending on bookings and booking prices

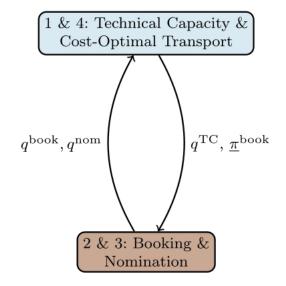


Figure: Bilevel Reformulation¹

Structure of Bilevel Model

Upper Level (TSO):

- nonlinear constraints depending on bookings and booking prices
- nonlinear adjustable robust,
 i.e. infinitely many, constraints
 due to technical capacities

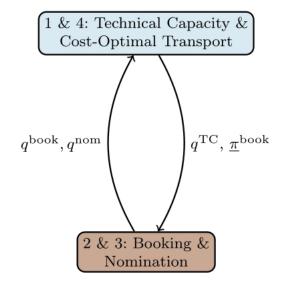


Figure: Bilevel Reformulation¹

Structure of Bilevel Model

Upper Level (TSO):

- nonlinear constraints depending on bookings and booking prices
- nonlinear adjustable robust,
 i.e. infinitely many, constraints
 due to technical capacities

Concave lower level (Gas traders)

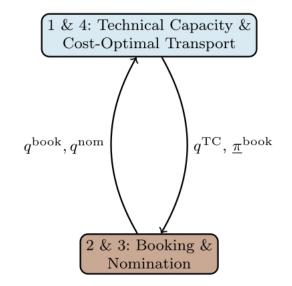


Figure: Bilevel Reformulation¹

Structure of Bilevel Model

Upper Level (TSO):

- nonlinear constraints depending on bookings and booking prices
- nonlinear adjustable robust,
 i.e. infinitely many, constraints
 due to technical capacities

Concave lower level (Gas traders)

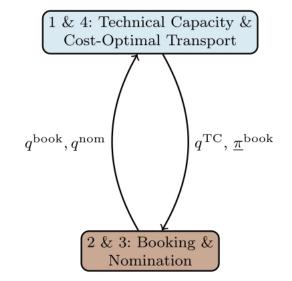


Figure: Bilevel Reformulation¹

Main Challenge: technical capacities

Nonlinear Adjustable Robustness

A vector q^{TC} denotes technical capacities if

Nonlinear Adjustable Robustness

A vector q^{TC} denotes technical capacities if

$$\forall q^{\text{nom}} \in \{q^{\text{nom}} \colon \sum_{u \in V^+ \cup V^-} \sigma_u q_u^{\text{nom}} = 0, 0 \le q^{\text{nom}} \le q^{\text{TC}}\} := B$$

Nonlinear Adjustable Robustness

A vector q^{TC} denotes technical capacities if

$$\forall q^{\text{nom}} \in \{q^{\text{nom}} \colon \sum_{u \in V^+ \cup V^-} \sigma_u q_u^{\text{nom}} = 0, 0 \le q^{\text{nom}} \le q^{\text{TC}}\} := B$$

 $\exists (\pi,q) \text{ such that }$

Nonlinear Adjustable Robustness

A vector q^{TC} denotes technical capacities if

$$\forall q^{\text{nom}} \in \{q^{\text{nom}} \colon \sum_{u \in V^+ \cup V^-} \sigma_u q_u^{\text{nom}} = 0, 0 \le q^{\text{nom}} \le q^{\text{TC}}\} := B$$

$$\exists (\pi,q)$$
 such that

$$\begin{aligned} \pi_u - \pi_v &= \psi_a \left(d_a, q_a \right), & a = (u, v) \in A, \\ \sum_{a \in \delta^{\text{out}}(v)} q_a - \sum_{a \in \delta^{\text{in}}(v)} q_a = q_v^{\text{nom}}, & v \in V, \\ \pi_v &\leq \pi_v \leq \bar{\pi}_v, & v \in V, \end{aligned}$$

is feasible.

Nonlinear Adjustable Robustness

A vector q^{TC} denotes technical capacities if

$$\forall q^{\text{nom}} \in \{q^{\text{nom}} \colon \sum_{u \in V^+ \cup V^-} \sigma_u q_u^{\text{nom}} = 0, 0 \le q^{\text{nom}} \le q^{\text{TC}}\} := B$$

$$\exists (\pi,q)$$
 such that

$$\begin{aligned} \pi_u - \pi_v &= \psi_a \left(d_a, q_a \right), & a = (u, v) \in A, \\ \sum_{a \in \delta^{\text{out}}(v)} q_a - \sum_{a \in \delta^{\text{in}}(v)} q_a = q_v^{\text{nom}}, & v \in V, \\ \pi_v &\leq \pi_v \leq \bar{\pi}_v, & v \in V, \end{aligned}$$

is feasible.

No standard techniques of robust optimization are applicable

Joint Work Robinius, Schewe, Schmidt, Stolten, and Welder²

Joint Work Robinius, Schewe, Schmidt, Stolten, and Welder²

Potential Loss Function

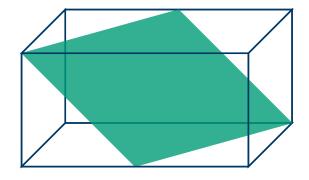
Here, $\psi_a(d_a, \cdot) : \mathbb{R} \to \mathbb{R}$ is a *potential function* that is continuous, strictly increasing, and odd w.r.t the second argument.

Joint Work Robinius, Schewe, Schmidt, Stolten, and Welder²

Potential Loss Function

Here, $\psi_a(d_a, \cdot) : \mathbb{R} \to \mathbb{R}$ is a *potential function* that is continuous, strictly increasing, and odd w.r.t the second argument.

• Set of infinitely many nominations *B*

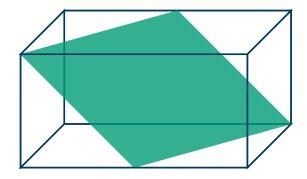


Joint Work Robinius, Schewe, Schmidt, Stolten, and Welder²

Potential Loss Function

Here, $\psi_a(d_a, \cdot) : \mathbb{R} \to \mathbb{R}$ is a *potential function* that is continuous, strictly increasing, and odd w.r.t the second argument.

- Set of infinitely many nominations *B*
- Set of polynomial many nominations B^{*} ⊂ B

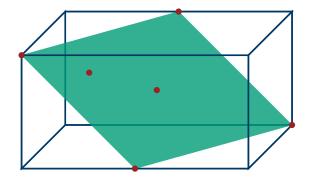


Joint Work Robinius, Schewe, Schmidt, Stolten, and Welder²

Potential Loss Function

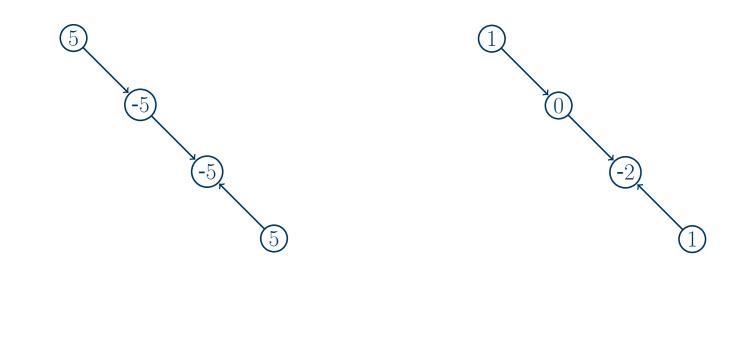
Here, $\psi_a(d_a, \cdot) : \mathbb{R} \to \mathbb{R}$ is a *potential function* that is continuous, strictly increasing, and odd w.r.t the second argument.

- Set of infinitely many nominations *B*
- Set of polynomial many nominations B^{*} ⊂ B

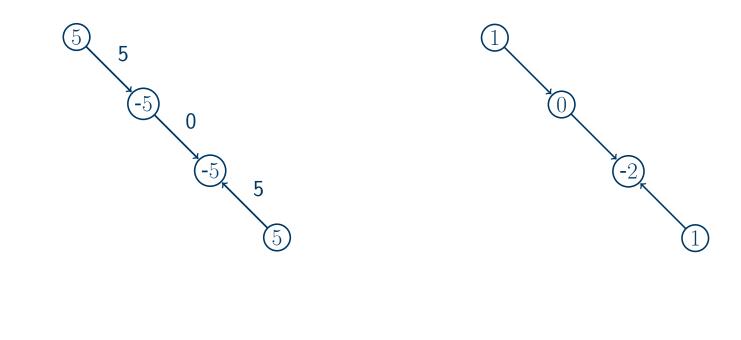


Greedy Approach

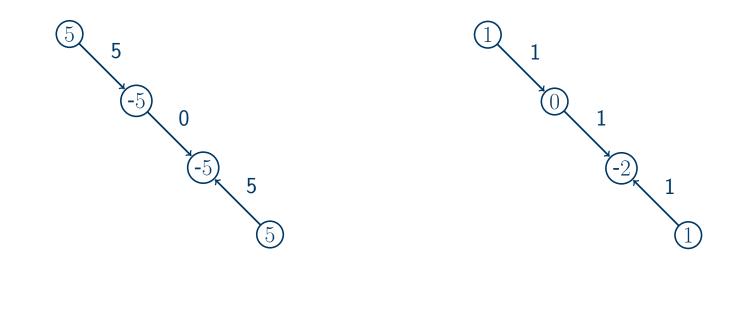
Greedy Approach



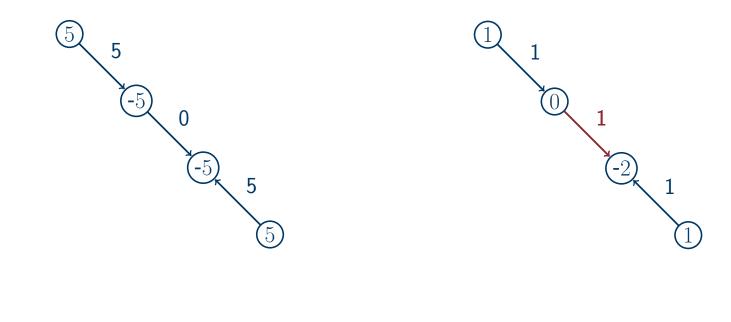
Greedy Approach



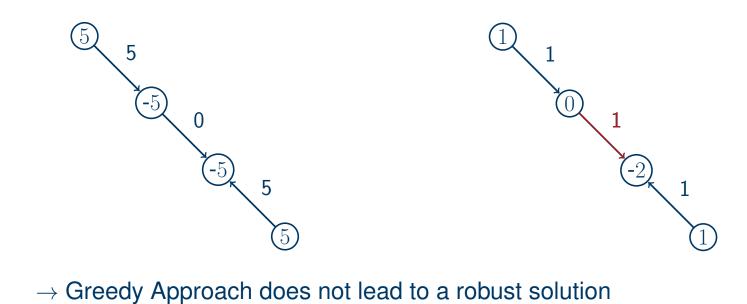
Greedy Approach



Greedy Approach



Greedy Approach



Theorem

Deciding the feasibility of technical capacities is in P.

Theorem

Deciding the feasibility of technical capacities is in P.

We compute maximally $|V|^2$ many special nominations.

Theorem

Deciding the feasibility of technical capacities is in P.

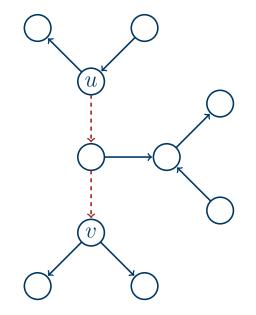
We compute maximally $|V|^2$ many special nominations.

Technical capacities are feasible if and only if these special nominations are feasible.

Structure of Special Nominations

Special Nominations

Consider entry u and exit v.

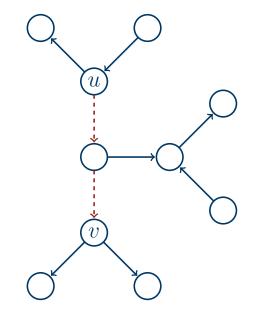


Structure of Special Nominations

Special Nominations

Consider entry u and exit v. Special nomination $q^{\text{nom}} \in B_{u,v} \subseteq B$ and its unique flows q satisfy:

(1) Node u supplies node v.



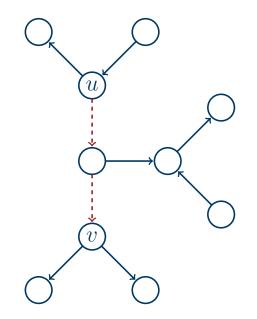
Structure of Special Nominations

Special Nominations

Consider entry u and exit v. Special nomination $q^{\text{nom}} \in B_{u,v} \subseteq B$ and its unique flows q satisfy:

(1) Node u supplies node v.

(2) The absolute flow $|q_a|$ on each arc $a \in A_{P(u,v)}$ is maximal w.r.t. all flows $\tilde{q} \in F(B)$ satisfying (1).



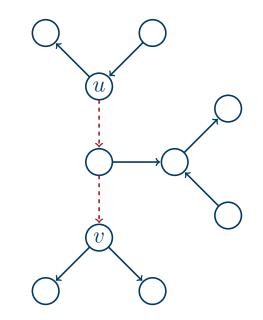
Structure of Special Nominations

Special Nominations

Consider entry u and exit v. Special nomination $q^{\text{nom}} \in B_{u,v} \subseteq B$ and its unique flows q satisfy:

(1) Node u supplies node v.

(2) The absolute flow $|q_a|$ on each arc $a \in A_{P(u,v)}$ is maximal w.r.t. all flows $\tilde{q} \in F(B)$ satisfying (1).

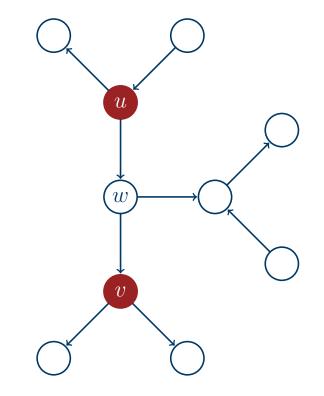


Lemma (Existence of Special Nominations)

For each entry u and exit v a special nomination exists: $B_{u,v} \neq \emptyset$ and it can be computed in polynomial time by an LP.

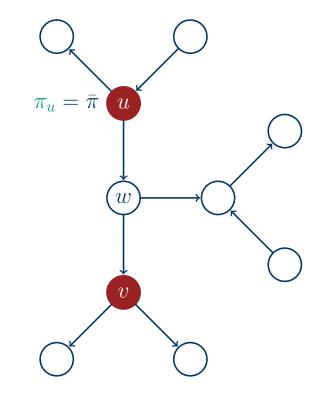
Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



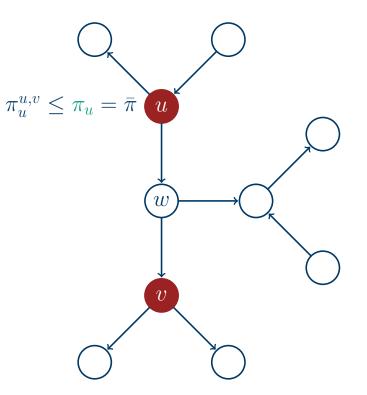
Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



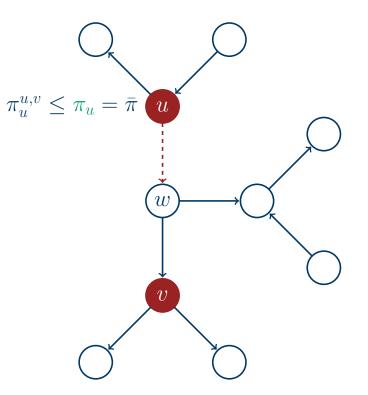
Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



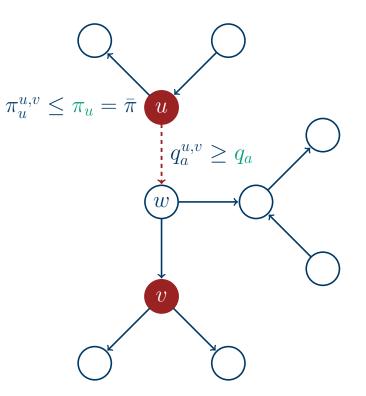
Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



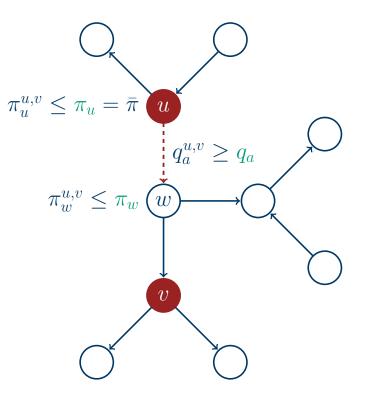
Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



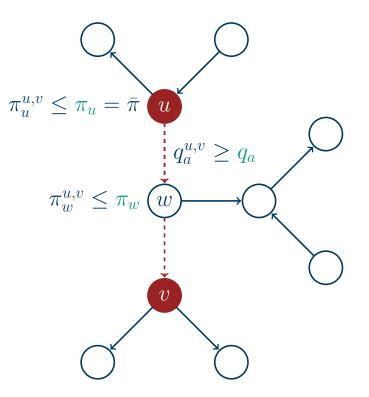
Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



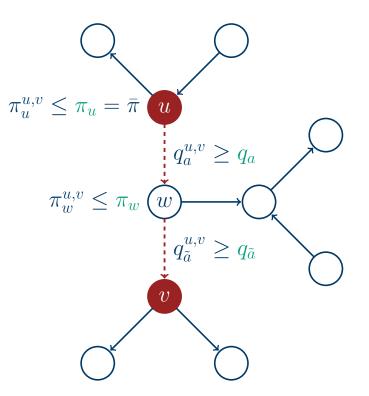
Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



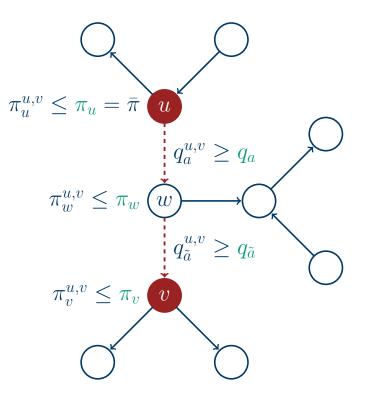
Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



Lemma

- the pressure drop from u to v in $q_{u,v}^{\text{nom}}$ is larger than in q^{nom} and
- the pressure satisfy $\pi_v \geq \pi_v^{u,v}$.



Diameter Selection of Hydrogen Networks

Detailed Setting

- Tree G = (V, A) with passive arcs
- Finite set of diameters $D_a, a \in A$

Diameter Selection of Hydrogen Networks

Detailed Setting

- Tree G = (V, A) with passive arcs
- Finite set of diameters $D_a, a \in A$
- Pressure loss function

$$\pi_u - \pi_v = \psi_a (d_a, q_a), \quad \psi_a (d_a, q_a) = \beta_a \frac{\lambda(d_a, q_a)}{d_a^5} q_a |q_a|$$

• Pressure bounds $[\underline{\pi}_u, \overline{\pi}_u]$ for $u \in V$

Diameter Selection of Hydrogen Networks

Detailed Setting

- Tree G = (V, A) with passive arcs
- Finite set of diameters $D_a, a \in A$
- Pressure loss function

$$\pi_u - \pi_v = \psi_a (d_a, q_a), \quad \psi_a (d_a, q_a) = \beta_a \frac{\lambda(d_a, q_a)}{d_a^5} q_a |q_a|$$

- Pressure bounds $[\underline{\pi}_u, \overline{\pi}_u]$ for $u \in V$
- Technical capacities q^{TC} , here demand prediction

$$B := \left\{ q^{\text{nom}} \colon \sum_{v \in V} \sigma_u q_v^{\text{nom}} = 0, \ 0 \le q_v^{\text{nom}} \le q^{\text{TC}}, \ v \in V \right\}$$

Modeling Nonlinear Model

Diameter Sizing Model

$$\begin{split} \min_{x,q,\pi} & \sum_{a \in A} \sum_{d \in D_a} c_{a,d} x_{a,d} \\ \text{s.t.} & \pi_{q_u^{\text{nom}}} - \pi_{q_v^{\text{nom}}} = \psi_a \left(\sum_{d \in D_a} d x_{a,d}, q_{q_a^{\text{nom}}} \right), \quad a = (u,v) \in A, \ q^{\text{nom}} \in B, \\ & \sum_{a \in \delta^{\text{out}}(v)} q_{q_a^{\text{nom}}} - \sum_{a \in \delta^{\text{in}}(v)} q_{q_a^{\text{nom}}} = q_v^{\text{nom}}, \qquad v \in V, \ q^{\text{nom}} \in B, \\ & \pi_v \leq \pi_{q_v^{\text{nom}}} \leq \bar{\pi}_v, \qquad v \in V, \ q^{\text{nom}} \in B, \\ & \sum_{d \in D_a} x_{a,d} = 1, \qquad a \in A, \\ & x_{a,d} \in \{0,1\}, \qquad a \in A, \ d \in D_a. \end{split}$$

Modeling Nonlinear Model

Diameter Sizing Model

$$\begin{array}{ll} \min_{x,q,\pi} & \displaystyle\sum_{a \in A} \displaystyle\sum_{d \in D_a} c_{a,d} \, x_{a,d} \\ \text{s.t.} & \mbox{Check feasibility of } |V^2| \mbox{ many special scenarios,} \\ & \displaystyle\sum_{d \in D_a} x_{a,d} = 1, \\ & \displaystyle x_{a,d} \in \{0,1\}, \end{array} & a \in A, \ a \in A, \ d \in D_a. \end{array}$$

Details of Instance

Instance

- Realistic hydrogen network of Eastern Germany planned by Forschungszentrum Jülich (IEK-3)
- 1 Entry, 1 storage, and 745 exits
- 28 diameters in range 0.1063 – 1.536 m
- Upper pressure bound $\bar{\pi} =$ 95 bar



Figure: Hydrogen Network²

²Robinius, Schewe, Schmidt, Stolten, Thürauf, and Welder, "Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks".

Results of Instance: Refueling Station without Local Onsite Storage

Results of Instance

²Robinius, Schewe, Schmidt, Stolten, Thürauf, and Welder, "Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks".

Results of Instance: Refueling Station without Local Onsite Storage

Results of Instance

- Reduced nomination set *B** contains 25 nominations
- Computation time of $B^* < 0.52 s$

²Robinius, Schewe, Schmidt, Stolten, Thürauf, and Welder, "Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks".

15

Results of Instance: Refueling Station without Local Onsite Storage

Results of Instance

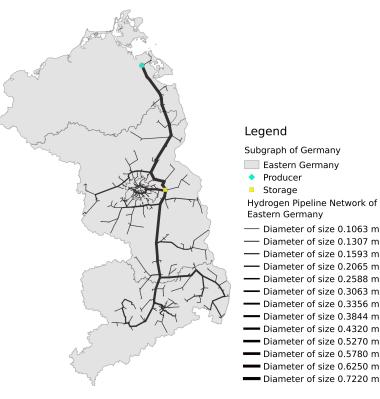
- Reduced nomination set *B** contains 25 nominations
- Computation time of $B^* < 0.52 s$
- Instance solved to optimality gap < 0.01 %
- Total run time < 32 s, for different lower pressure levels

²Robinius, Schewe, Schmidt, Stolten, Thürauf, and Welder, "Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks".

Results of Instance: Refueling Station without Local Onsite Storage

Results of Instance

- Reduced nomination set B* contains 25 nominations
- Computation time of $B^* < 0.52 s$
- Instance solved to optimality gap < 0.01 %
- Total run time < 32 s, for different lower pressure levels



Robust Diameter Selection²

²Robinius, Schewe, Schmidt, Stolten, Thürauf, and Welder, "Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks".

Theorem³

Vector q^{TC} are feasible technical capacities if and only if

³Labbé, Plein, and Schmidt, "Bookings in the European Gas Market".

Theorem³

Vector q^{TC} are feasible technical capacities if and only if

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \le \pi_{w_1}^+ - \pi_{w_2}^-$$
 for all $(w_1, w_2) \in V^2$

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \coloneqq \max_{q^{\mathrm{nom}},q} \quad \pi_{w_1} - \pi_{w_2}$$

s.t.
$$\sum_{a \in \delta^{\mathrm{out}}(v)} q_a - \sum_{a \in \delta^{\mathrm{in}}(v)} q_a = \sigma_u q_u^{\mathrm{nom}}, \qquad u \in V,$$
$$\pi_u - \pi_v = \psi_a \left(d_a, q_a \right), \qquad a = (u, v) \in A,$$
$$0 \le q_u^{\mathrm{nom}} \le q_u^{\mathrm{TC}}, \quad u \in V.$$

<u>3Labbé, Plein, and Schmidt, "Bookings in the European Gas Market".</u>

Theorem³

Vector q^{TC} are feasible technical capacities if and only if

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \le \pi_{w_1}^+ - \pi_{w_2}^-$$
 for all $(w_1, w_2) \in V^2$

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \coloneqq \max_{q^{\mathrm{nom}},q} \quad \pi_{w_1} - \pi_{w_2}$$

s.t.
$$\sum_{a \in \delta^{\mathrm{out}}(v)} q_a - \sum_{a \in \delta^{\mathrm{in}}(v)} q_a = \sigma_u q_u^{\mathrm{nom}}, \qquad u \in V,$$
$$\pi_u - \pi_v = \psi_a \left(d_a, q_a \right), \qquad a = (u, v) \in A,$$
$$0 \le q_u^{\mathrm{nom}} \le q_u^{\mathrm{TC}}, \quad u \in V.$$

For $\psi_a(d_a, q_a) = \Lambda_a q_a$: Deciding feasibility of technical capacities is in P.

<u>3Labbé, Plein, and Schmidt, "Bookings in the European Gas Market".</u>

Theorem³

Vector q^{TC} are feasible technical capacities if and only if

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \le \pi_{w_1}^+ - \pi_{w_2}^-$$
 for all $(w_1, w_2) \in V^2$

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \coloneqq \max_{q^{\mathrm{nom}},q} \quad \pi_{w_1} - \pi_{w_2}$$

s.t.
$$\sum_{a \in \delta^{\mathrm{out}}(v)} q_a - \sum_{a \in \delta^{\mathrm{in}}(v)} q_a = \sigma_u q_u^{\mathrm{nom}}, \qquad u \in V,$$
$$\pi_u - \pi_v = \psi_a \left(d_a, q_a \right), \qquad a = (u, v) \in A$$
$$0 \le q_u^{\mathrm{nom}} \le q_u^{\mathrm{TC}}, \quad u \in V.$$

For $\psi_a(d_a, q_a) = \Lambda_a q_a$: Deciding feasibility of technical capacities is in P. More accurate nonlinear flow $\psi_a(d_a, q_a) = \Lambda_a q_a |q_a|$: for trees it is in P.

³Labbé, Plein, and Schmidt, "Bookings in the European Gas Market".

Theorem³

Vector q^{TC} are feasible technical capacities if and only if

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \le \pi_{w_1}^+ - \pi_{w_2}^-$$
 for all $(w_1, w_2) \in V^2$

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \coloneqq \max_{q^{\mathrm{nom}},q} \quad \pi_{w_1} - \pi_{w_2}$$

s.t.
$$\sum_{a \in \delta^{\mathrm{out}}(v)} q_a - \sum_{a \in \delta^{\mathrm{in}}(v)} q_a = \sigma_u q_u^{\mathrm{nom}}, \qquad u \in V,$$
$$\pi_u - \pi_v = \psi_a \left(d_a, q_a \right), \qquad a = (u, v) \in A$$
$$0 \le q_u^{\mathrm{nom}} \le q_u^{\mathrm{TC}}, \quad u \in V.$$

For $\psi_a(d_a, q_a) = \Lambda_a q_a$: Deciding feasibility of technical capacities is in P. More accurate nonlinear flow $\psi_a(d_a, q_a) = \Lambda_a q_a |q_a|$: for trees it is in P. What about cycles?

³Labbé, Plein, and Schmidt, "Bookings in the European Gas Market".

Joint work with M. Labbé, F. Plein, M. Schmidt⁴

⁴Labbé, Plein, Schmidt, and Thürauf, *Deciding Feasibility of a Booking in the European* Gas Market on a Cycle is in P.

Joint work with M. Labbé, F. Plein, M. Schmidt⁴

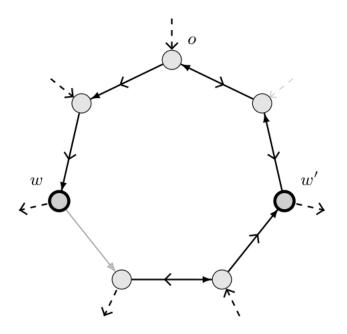


Figure: Different flow-meeting points w and w'.⁴

⁴Labbé, Plein, Schmidt, and Thürauf, *Deciding Feasibility of a Booking in the European* <u>Gas Market on a Cycle is in P.</u>

Joint work with M. Labbé, F. Plein, M. Schmidt⁴

Cycles

Results of trees cannot be used for cycles

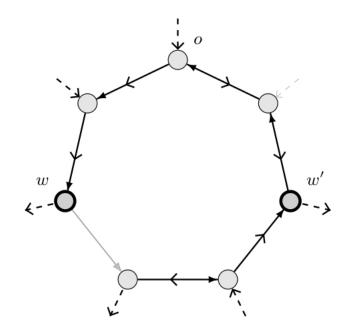


Figure: Different flow-meeting points w and $w^{\prime}.^4$

⁴Labbé, Plein, Schmidt, and Thürauf, *Deciding Feasibility of a Booking in the European* Gas Market on a Cycle is in P.

Joint work with M. Labbé, F. Plein, M. Schmidt⁴

Cycles

Results of trees cannot be used for cycles

Why are cycles so bad?

No cyclic flows are possible

Different flow-meeting points

The potential drop in a cycle sums up to zero

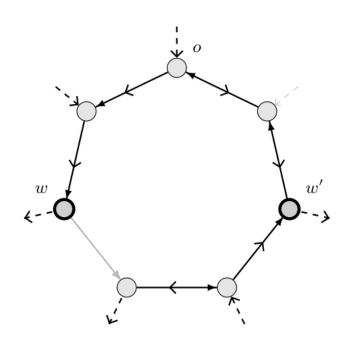


Figure: Different flow-meeting points w and w'.⁴

⁴Labbé, Plein, Schmidt, and Thürauf, *Deciding Feasibility of a Booking in the European Gas Market on a Cycle is in P.*

Theorem²

Vector q^{TC} are feasible technical capacities if and only if

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \leq \pi_{w_1}^+ - \pi_{w_2}^- \text{ for all } (w_1, w_2) \in V^2$$

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \coloneqq \max_{q^{\mathrm{nom}}, q} \quad \pi_{w_1} - \pi_{w_2}$$

s.t.
$$\sum_{a \in \delta^{\mathrm{out}}(v)} q_a - \sum_{a \in \delta^{\mathrm{in}}(v)} q_a = \sigma_u q_u^{\mathrm{nom}}, \qquad u \in V,$$

$$\pi_u - \pi_v = \Lambda_a q_a |q_a|, \qquad a = (u, v) \in A,$$

$$0 \leq q_u^{\mathrm{nom}} \leq q_u^{\mathrm{TC}}, \quad u \in V.$$

Theorem²

 φ

Vector q^{TC} are feasible technical capacities if and only if

$$\varphi_{w_1w_2}(q^{\mathrm{TC}}) \leq \pi_{w_1}^+ - \pi_{w_2}^- \text{ for all } (w_1, w_2) \in V^2$$

$$w_1w_2(q^{\mathrm{TC}}) \coloneqq \max_{q^{\mathrm{nom}}, q} \quad \pi_{w_1} - \pi_{w_2}$$
s.t.
$$\sum_{a \in \delta^{\mathrm{out}}(v)} q_a - \sum_{a \in \delta^{\mathrm{in}}(v)} q_a = \sigma_u q_u^{\mathrm{nom}}, \qquad u \in V,$$

$$\pi_u - \pi_v = \Lambda_a q_a |q_a|, \qquad a = (u, v) \in A,$$

$$0 < q_u^{\mathrm{nom}} < q_u^{\mathrm{TC}}, \quad u \in V.$$

Theorem

It always exists an optimal solution with

- a single flow-meeting point
- a *certain* combinatorial structure and only polynomial many different possibilities for this structure exist.

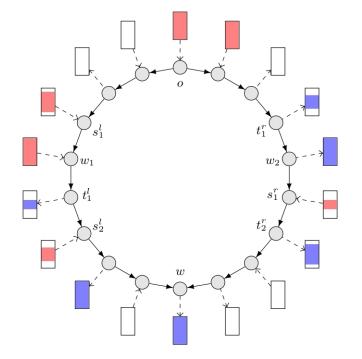


Figure: Properties of an Optimal Solution that Maximizes the Potential Difference between w_1 and w_2 .⁴

⁴Labbé, Plein, Schmidt, and Thürauf, *Deciding Feasibility of a Booking in the European* Gas Market on a Cycle is in P.

Sketch Algorithm

Result: Maximum potential difference between w_1 and w_2 . foreach Combinatorial Structure (polynomially many) do

Sketch Algorithm

Result: Maximum potential difference between w_1 and w_2 . foreach Combinatorial Structure (polynomially many) do

Bound variables according to the chosen structure;

Sketch Algorithm

Result: Maximum potential difference between w_1 and w_2 . foreach Combinatorial Structure (polynomially many) do

Bound variables according to the chosen structure;

 \rightarrow Nonlinear optimization problem reduces to a nonlinear inequality system of fixed dimension;

Sketch Algorithm

Result: Maximum potential difference between w_1 and w_2 . foreach Combinatorial Structure (polynomially many) do

Bound variables according to the chosen structure;

 \rightarrow Nonlinear optimization problem reduces to a nonlinear inequality system of fixed dimension;

Decide feasibility of this system with tools of real algebraic geometry;

Sketch Algorithm

Result: Maximum potential difference between w_1 and w_2 . foreach Combinatorial Structure (polynomially many) do

Bound variables according to the chosen structure;

 \rightarrow Nonlinear optimization problem reduces to a nonlinear inequality system of fixed dimension;

Decide feasibility of this system with tools of real algebraic geometry;

We can decide the feasibility of technical capacities in $O((\log(V) + \tau) + |V^+|^5|V^-|^4)$.

Complexity of Technical Capacities

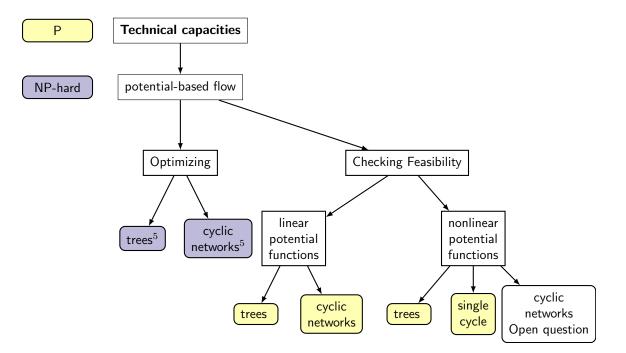


Figure: Overview of known complexity results for technical capacities and potential-based flows.

⁵Schewe, Schmidt, and Thürauf, *Computing Technical Capacities in the European Entry-Exit Gas Market is NP-Hard*.

Future Research

Solve the nonlinear bilevel model for the Entry-Exit gas market system with nonlinear potential-based flows for trees.

Future Research

Solve the nonlinear bilevel model for the Entry-Exit gas market system with nonlinear potential-based flows for trees.

Analyse social welfare effects of the Entry-Exit gas market system considering nonlinear potential-based flows.

Future Research

Solve the nonlinear bilevel model for the Entry-Exit gas market system with nonlinear potential-based flows for trees.

Analyse social welfare effects of the Entry-Exit gas market system considering nonlinear potential-based flows.

Answer final open question about the computational complexity of deciding the feasibility of technical capacities in general graphs.

Future Research

Solve the nonlinear bilevel model for the Entry-Exit gas market system with nonlinear potential-based flows for trees.

Analyse social welfare effects of the Entry-Exit gas market system considering nonlinear potential-based flows.

Answer final open question about the computational complexity of deciding the feasibility of technical capacities in general graphs.

Finish my PhD

Journal Articles

Martin Robinius, Lars Schewe, Martin Schmidt, Detlef Stolten, Johannes Thürauf, and Lara Welder *Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks* Published in Computational Optimization and Applications (2019): https://link.springer.com/article/10.1007/s10589-019-00085-x

Markus Reuß, Lara Welder, Johannes Thürauf, Jochen Linßen, Thomas Grube, Lars Schewe, Martin Schmidt, Detlef Stolten, and Martin Robinius Modeling hydrogen networks for future energy systems: A comparison of linear and nonlinear approaches Published in International Journal of Hydrogen Energy (2019): https://www.sciencedirect.com/science/article/pii/S0360319919338625

Preprints

Martine Labbé, Fränk Plein, Martin Schmidt, and Johannes Thürauf Deciding Feasibility of a Booking in the European Gas Market on a Cycle is in P Preprint: http://www.optimization-online.org/DB HTML/2019/11/7472.html

Lars Schewe, Martin Schmidt, and Johannes Thürauf Computing Technical Capacities in the European Entry-Exit Gas Market is NP-Hard Preprint: http://www.optimization-online.org/DB HTML/2020/01/7576.html

Thank you for your attention