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Motivation

The increase in renewable generation and load flexibility comes with
new challenges.

e Intelligencer

Power Back On After Blackout Strikes Much of

Manhattan o

By Margaret Hatmann and Chas Danner CAISO Hourly Load Forecast Error Differential GENSCAPE
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Source: https://www.genscape.com/blog

— Need for more reliable decisions. .


https://www.genscape.com/blog/year-review-behind-meter-solar-unmasking-secret-solar-california

Research question

Lot of historical data collected by power grid operators for the same
static power network.

How can historical data and network information be used
efficiently to ensure reliable decision making on the grid?
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Agenda

1. Introduction

2. Problem Formulation

3. A Data-Driven Scenario-Based Approach
4. Numerical Experiment

5. Conclusion & Future Work
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Optimal Power Flow

Goal of the problem: find the cheapest way to generate enough
power to satisfy the demand without violating technical constraints.
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Sets: Variables:
e Buses &, e p/qreal/reactive generation,
o lines¥ =22, e fP/f9 real/reactive power flow,
* Generators 4. e v/6 voltage magnitude/angle.
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OPF and Power Flow (PF) Recourse

Deterministic OPF PF Recourse
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— Non-linear, non convex
optimization problem.
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PF Recourse

1. Fix (p, v) for PV buses .

2. Find (p, g, f*, %, v, 6) by
solving (2)-(5).

— System of non-linear
equalities (easy to solve).
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OPF and Power Flow (PF) Recourse

Ideally: find (p°, v°) and an ’adjustment policy’ able to react in
case of perturbations.

Is this feature possible to ensure? If so, how?

We suggest:
e aformulation of Stochastic AC OPF (SACOPF).

e attacking the problem with a practical iterative approach.
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Stochastic AC OPF

We'll only assume load disturbances.
Q denotes the uncertainty set. For w € Q, the feasible set for OPF is:

FCope(w) ={(p. a.f".f9, v, 6) satisfying
Y =) p—(Pi+u")—GV: Vie B,

(ij)ex 3€Y;
> =) dg—(Q+urN)+BV Vie B,
(i)ex 3€Y:

and (4)— (8)}
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Stochastic AC OPF

Since (p, v) need to be used for recourse, we suggest the following

formulation:

(P°(Q),v°(Q)) = argmin ) _ cs(py)
€Y

s.t. (p“, g%, P9, %, v*, 8“) € Mope(w) YweQ

Zuf"“)cx YVweQ

i€RB
v =0 YweQ

p* =p°+

(11) and (12) define the adjustment policy.

Note that o is a parameter, ag & I1?I Vge Y.

(9)

(10)

(1)

(12)
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How to tackle SACOPF?

One main issue concerning Q:
o finite but huge if based on historical data.

e inifite if based on a probability distribution.

The idea is to intelligently reduce Q to Qy = {w;, .. ., wWN}, with N
small enough, and compute (p°(Qx), v°(Qx)) in a way that
ensures feasibility for all (or most of) w € Q.
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Agenda

3. A Data-Driven Scenario-Based Approach
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General Idea

Initialization
Choose Qg and
compute p°(Qo), v°(Qo)

N
Sampling

Test the robustness of p°(Qy), v°(Qx)

on a large number of samples & of Q.

Scenario Selection

Choose n scenarios to add to Qy.

Stochastic Solution
Solve SACOPF with Qy to get
new p°(Qu), V(Qu).
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Toy Example

One simple way to apply the approach:

e Add n random scenarios to Q.

Test case 73_ieee: 73 bus-system, 51 loads. We assume max/min

+/- 3% uniform perturbation of each load.

n Infeasibility PF Recourse
0 1,000/1,000

9 595/1,000

19 250/1,000

29 323/1,000

39 80/1,000

49 122/1,000
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Practical Approach

Initialization
Choose Qq and
compute p°(Qo), v°(Qo)

Sampling
Test the robustness of p°®(Qy), v°(Qn)
on a large number of samples & of Q.

Data-Driven Selection
MaxViol, NbConstr, Hybrid

Scenario Selection i1l

Choose n scenarios to add to Qy.
Enhancement

Stochastic Solution
Solve SACOPF with Qy to get
new p°(Qn), vO(Qu). 14/31




Data-Driven Selection

We should use sampling information to choose the scenarios to add to Q.

Sampling
Test the robustness of p°(Qn), vO(Qn)
on a large number of samples & of Q.

Scenario Selection

Choose n scenarios to add to Qy.
Ov=0y U{ws,..., wn}

&

i
NEZ
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Data-Driven Selection

How to select 'bad’ scenarios?
Example: we want to add 3 of these samples to Q.

e Sample s;. Constraints violated: [QgUp10, FlowLim3,VDown12].

Sample s,:

Sample s3.

Sample s4.

Sample ss.

Max violation: 7.5%.

Constraints violated: [QgUp10,VDown12].
Max violation: 5.0% .

Constraint violated: [QgUp10].
Max violation: 15.0% .

Constraints violated: [QgUp10, FlowLim3,VDown12].
Max violation: 2.2%.

Constraint violated: [ 1.
Max violation: 9.0% .
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Data-Driven Selection

How to select 'bad’ scenarios? Max Viol.
Example: we want to add 3 of these samples to Q.

e Sample s;. Constraints violated: [QgUp10, FlowLim3,VDown12]. @

Sample s,:

Sample s3.

Sample s4.

Sample ss.

Max violation: 7.5% .
Constraints violated: [QgUp10,VDown12].

Max violation: 5.0% .

Constraint violated: [QgUp10]. @
Max violation: 15.0% .

Constraints violated: [QgUp10, FlowLim3,VDown12].
Max violation: 2.2%.

Constraint violated: [ ].@
Max violation: 9.0% .
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Data-Driven Selection

How to select 'bad’ scenarios? Number of constraints.
Example: we want to add 3 of these samples to Q.

e Sample s;. Constraints violated: [QgUp10, FlowLim3,VDown12]. @

Sample s,:

Sample s3.

Sample s4.

Sample ss.

Max violation: 7.5%.

Constraints violated: [OgUple,VDownlz].@
Max violation: 5.0% .

Constraint violated: [QgUp10]. @
Max violation: 15.0% .

Constraints violated: [QgUp10, FlowLim3,VDown12].
Max violation: 2.2%.

Constraint violated: [ 1.
Max violation: 9.0% .
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Data-Driven Selection

How to select 'bad’ scenarios? Hybrid: weight, = — " ma’:lﬁécl
dJes ¢ e s

Example: we want to add 3 of these samples to Qy.

e Sample s;. Constraints violated: [QgUp10, FlowLim3,VDown12]. @
Max violation: 7.5%  weight, = 1.5.

Sample s,: Constraints violated: [QgUp10,VDown12] @
Max violation: 5.0%  weight,, = 1.

Sample s;. Constraint violated: [QgUp10]. @
Max violation: 15.0%  weight,, = 1.33.

Sample s,. Constraints violated: [QgUp10, FlowLim3,VDown12].
Max violation: 2.2%  weight,, = 1.15.

e Sample s5. Constraint violated: [ 1.
Max violation: 9.0%  weight,, = 0.93.
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Toy Example

73 _ieee: max/min +/- 3% uniform perturbation of each load.

e Add n = 5 scenarios from the 1,000 samples to Qy using

MaxViol, NbConstr or Hybrid selection .

n Infeasibility PF Recourse
0 1,000/1,000

9 595/1,000

19 250/1,000

29 323/1,000

39 80/1,000

49 122/1,000
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Toy Example

73 _ieee: max/min +/- 3% uniform perturbation of each load.

e Add n = 5 scenarios from the 1,000 samples to Qy using

MaxViol, NbConstr or Hybrid selection .

Scen. Selec. | #1t | |Qn| | PF Recourse
MaxViol 5 20 1/1,000
NbConstr 28 0/1,000
Hybrid 8 29 0/1,000

Still, Qy might be too large at the end of the iterations, especially

for this small test case.
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Practical Approach

Initialization
Choose Qq and
compute p°(Qo), v°(Qo)

Sampling
Test the robustness of p°®(Qy), v°(Qn)
on a large number of samples & of Q.

Data-Driven Selection
MaxViol, NbConstr, Hybrid

Scenario Selection i1l

Choose n scenarios to add to Qy.
Enhancement

Stochastic Solution
Solve SACOPF with Qy to get
new p°(Qn), v°(Qn). 18/31




Enhancement

After selecting 'bad’ scenarios, would it be possible to make them
capture 'more scenarios'?
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Enhancement

After selecting 'bad’ scenarios, would it be possible to make them
capture 'more scenarios'?

Enhance(w)

19/31



Enhance operation

Let w be a scenario to be added to Qy.

.. set of sampled scenarios violating constraintc € 6.
%.: set of constraints violated by w.

yf:: violation of constraints ¢ by sampled scenario s.

2
—Vce 4, d= argmdin Zy (yi— (do+ 2 e diuf)) + Aldly
SE€ES

— Deduce d“ by gathering non zero directions of d*, c € 6,,.
— Vie A, depending on sign(d‘f”),

u” = Enhance(u’) = mj, y, or p°
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Toy Example

73 _ieee: max/min +/- 3% uniform perturbation of each load.

e n=>5,|%|=1,000usingMaxViol, NbConstr or Hybrid

selection and applying Enhance.

Scen. Selec. | #1t | |Qn| | PF Recourse
MaxViol 5 20 1/1,000
NbConstr 7 28 0/1,000
Hybrid 8 29 0/1,000
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Toy Example

73 _ieee: max/min +/- 3% uniform perturbation of each load.

e n=>5,|%|=1,000usingMaxViol, NbConstr or Hybrid

selection and applying Enhance.

Scen. Selec. | #1t | |Qn| | PF Recourse
MaxViol 1 6 0/1,000
NbConstr 2 11 0/1,000
Hybrid 2 1 0/1,000
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Agenda

4. Numerical Experiment
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Numerical experiment

The method works on small test cases. For these 3 test cases, we
apply +/- 3 % at each load.

Test case | #Loads | Scen.Selec. | #1t | |Qn| | PF Recourse
24 ieee 17 MaxViol 3 7 0/1,000
73 ieee 51 MaxViol 1 6 0/1,000
118 ieee 99 MaxViol 3 14 0/1,000
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Numerical experiment

One large test case: 1354 pegase. +/- 2% for loads located at leaf
buses: 211 uncertain loads.

=380 kV
—Transformer
—220 kV
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1354 pegase

How does the method scale up?

Scen. Selec.

#1t

|On|

PF Recourse

Max. Viol.

Exp. Viol.

MaxViol

6

31

10/1,000

0.17%

0.06%

— Very promising results!

Would it be possible to get better if we choose a better Qg?
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Practical Approach

Initialization Identification of
Choose Qo and Critical Scenarios

compute p°(Qo), v°(Qo)

Sampling
Test the robustness of p°®(Qy), v°(Qn)
on a large number of samples & of Q.

Data-Driven Selection
MaxViol, NbConstr, Hybrid

Scenario Selection i1l

Choose n scenarios to add to Qy.
Enhancement

Stochastic Solution
Solve SACOPF with Qy to get
new p°(Qn), v°(Qn). 26/31




At the moment, we only initialize Qg := {wo}.
Could we find a better way to initialize the algorithm?

e If historical data is available, an operator would probably have
an idea of what critical scenarios could be.
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At the moment, we only initialize Qg := {wo }.

Could we find a better way to initialize the algorithm?

e Otherwise, we suggest to detect critical scenarios in the
following way:

1.
2.

Take the deterministic solution and consider p as a variable.
Change the objective: Maximize violation of a certain
constraint.

For each constraint violated — a critical scenario.

If necessary, cluster the critical scenarios to reduce the size of
potential Q.
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1354 pegase

Scen. Selec. | #1t | |[Qn| | PF Recourse
MaxViol 6 31 10/1,000

Applying this to 1354 pegase, we obtained 392 critical scenarios
and reduced it to 11 scenarios using K-means clustering in order to
get Q.

Scen. Selec. | #1t | |[Qn| | PF Recourse
Hybrid 3 25 0/1,000
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Practical Approach

Initialization Identification of
Choose Qo and Critical Scenarios

compute p°(Qo), v°(Qo)

Sampling
Test the robustness of p°®(Qy), v°(Qn)
on a large number of samples & of Q.

Data-Driven Selection
MaxViol, NbConstr, Hybrid

Scenario Selection i1l

Choose n scenarios to add to Qy.
Enhancement

Stochastic Solution
Solve SACOPF with Qy to get
new p°(Qn), v°(Qn). 29/31




Conclusion & Future Work

e The formulation of the problem and the practical approach
confirm that reliable decisions can be taken for solving AC-OPF.
e Numerical experiments seem promising:
- 1354 pegase: |Qy| = 25 for 211 perturbed loads on a 1354
bus-system.
e Future work:

- Parallelization: Initialization and Sampling.

- Initial clustering could be improved.

- More realistic uncertainty modeling.

- Extend the approach to larger and more realistic test cases.
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Thank you for your attention!

Stochastic AC Optimal Power Flow:
A Data-Driven Approach
https://arxiv.org/abs/1910.09144
To appear in PSCC2020

Ilyés Mezghani
https://sites.google.com/view/ilyesmezghani/home

31/31


https://arxiv.org/abs/1910.09144
https://sites.google.com/view/ilyesmezghani/home

	Introduction
	Problem Formulation
	A Data-Driven Scenario-Based Approach
	Numerical Experiment
	Conclusion & Future Work

